- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我是 R 的新手,并试图了解 Rshiny 以构建 UI。我正在尝试为我的 python 应用程序创建一个 UI,用于转录多个 wav 文件。下面有两个部分,第一个是我的 python 应用程序,第二个是我在 R 中使用 reticulate 来调用我的 transcribe.py 应用程序的 Shiny 应用程序。但由于某种原因,我没有收到任何输出。
我的 Python 应用程序运行良好,不需要代码审查。但是,Rshiny 应用程序没有正确执行 Python 应用程序以产生所需的结果。目标是让用户从 UI 转录文件并决定他们是否要下载 csv。
我有一个用于转录文件的 python 应用程序,名为 transcribe.py-
import os
import json
import time
# import threading
from pathlib import Path
import concurrent.futures
# from os.path import join, dirname
from ibm_watson import SpeechToTextV1
from ibm_watson.websocket import RecognizeCallback, AudioSource
from ibm_cloud_sdk_core.authenticators import IAMAuthenticator
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import pandas as pd
# Replace with your api key.
my_api_key = "abc123"
# You can add a directory path to Path() if you want to run
# the project from a different folder at some point.
directory = Path().absolute()
authenticator = IAMAuthenticator(my_api_key)
service = SpeechToTextV1(authenticator=authenticator)
service.set_service_url('https://api.us-east.speech-to-text.watson.cloud.ibm.com')
# I used this URL.
# service.set_service_url('https://stream.watsonplatform.net/speech-to-text/api')
models = service.list_models().get_result()
#print(json.dumps(models, indent=2))
model = service.get_model('en-US_BroadbandModel').get_result()
#print(json.dumps(model, indent=2))
# get data to a csv
########################RUN THIS PART SECOND#####################################
def process_data(json_data, output_path):
print(f"Processing: {output_path.stem}")
cols = ["transcript", "confidence"]
dfdata = [[t[cols[0]], t[cols[1]]] for r in json_data.get('results') for t in r.get("alternatives")]
df0 = pd.DataFrame(data = dfdata, columns = cols)
df1 = pd.DataFrame(json_data.get("speaker_labels")).drop(["final", "confidence"], axis=1)
# test3 = pd.concat([df0, df1], axis=1)
test3 = pd.merge(df0, df1, left_index = True, right_index = True)
# sentiment
print(f"Getting sentiment for: {output_path.stem}")
transcript = test3["transcript"]
transcript.dropna(inplace=True)
analyzer = SentimentIntensityAnalyzer()
text = transcript
scores = [analyzer.polarity_scores(txt) for txt in text]
# data = pd.DataFrame(text, columns = ["Text"])
data = transcript.to_frame(name="Text")
data2 = pd.DataFrame(scores)
# final_dataset= pd.concat([data, data2], axis=1)
final_dataset = pd.merge(data, data2, left_index = True, right_index = True)
# test4 = pd.concat([test3, final_dataset], axis=1)
test4 = pd.merge(test3, final_dataset, left_index = True, right_index = True)
test4.drop("Text", axis=1, inplace=True)
test4.rename(columns = {
"neg": "Negative",
"pos": "Positive",
"neu": "Neutral",
}, inplace=True)
# This is the name of the output csv file
test4.to_csv(output_path, index = False)
def process_audio_file(filename, output_type = "csv"):
audio_file_path = directory.joinpath(filename)
# Update output path to consider `output_type` parameter.
out_path = directory.joinpath(f"{audio_file_path.stem}.{output_type}")
print(f"Current file: '{filename}'")
with open(audio_file_path, "rb") as audio_file:
data = service.recognize(
audio = audio_file,
speaker_labels = True,
content_type = "audio/wav",
inactivity_timeout = -1,
model = "en-US_NarrowbandModel",
continuous = True,
).get_result()
print(f"Speech-to-text complete for: '{filename}'")
# Return data and output path as collection.
return [data, out_path]
def main():
print("Running main()...")
# Default num. workers == min(32, os.cpu_count() + 4)
n_workers = os.cpu_count() + 2
# Create generator for all .wav files in folder (and subfolders).
file_gen = directory.glob("**/*.wav")
with concurrent.futures.ThreadPoolExecutor(max_workers = n_workers) as executor:
futures = {executor.submit(process_audio_file, f) for f in file_gen}
for future in concurrent.futures.as_completed(futures):
pkg = future.result()
process_data(*pkg)
if __name__ == "__main__":
print(f"Program to process audio files has started.")
t_start = time.perf_counter()
main()
t_stop = time.perf_counter()
print(f"Done! Processing completed in {t_stop - t_start} seconds.")
在 Rstudio 中,我尝试过 -
library(shiny)
library(reticulate) # for reading Python code
library(dplyr)
library(stringr)
library(formattable) # for adding color to tables
library(shinybusy) # for busy bar
library(DT) # for dataTableOutput
use_python("/usr/lib/python3")
ui <- fluidPage(
add_busy_bar(color = "#5d98ff"),
fileInput("wavFile", "SELECT .WAV FILE", accept = ".wav"),
uiOutput("downloadData"),
dataTableOutput("transcript"),
)
R.Server 文件
server <- function(input, output) {
# .WAV File Selector ------------------------------------------------------
file <- reactive({
file <- input$wavFile # Get file from user input
gsub("\\\\","/",file$datapath) # Access the file path. Convert back slashes to forward slashes.
})
# Transcribe and Clean ----------------------------------------------------
transcript <- reactive({
req(input$wavFile) # Require a file before proceeding
source_python('transcribe.py') # Load the Python function # COMMENT LINE OUT WHEN TESTING NON-TRANSCRIPTION FUNCTIONALITY
transcript <- data.frame(transcribe(file())) # Transcribe the file # COMMENT LINE OUT WHEN TESTING NON-TRANSCRIPTION FUNCTIONALITY
# load('transcript.rdata') # Loads a dummy transcript # UNCOMMENT LINE OUT WHEN TESTING NON-TRANSCRIPTION FUNCTIONALITY
transcript$transcript <- unlist(transcript$transcript) # Transcript field comes in as a list. Unlist it.
transcript <- transcript[which(!(is.na(transcript$confidence))),] # Remove empty lines
names(transcript) <- str_to_title(names(transcript)) # Capitalize column headers
transcript # Return the transcript
})
# Use a server-side download button ---------------------------------------
# ...so that the download button only appears after transcription
output$downloadData <- renderUI({
req(transcript())
downloadButton("handleDownload","Download CSV")
})
output$handleDownload <- downloadHandler(
filename = function() {
paste('Transcript ',Sys.Date(), ".csv", sep = "")
},
content = function(file) {
write.csv(transcript(), file, row.names = FALSE)
}
)
# Transcript table --------------------------------------------------------
output$transcript <- renderDataTable({
as.datatable(formattable(
transcript() %>%
select(Transcript,
Confidence,
Negative,
Positive
),
list(Confidence = color_tile('#ffffff','#a2b3c8'),
Negative = color_tile('#ffffff', '#e74446'),
Positive = color_tile('#ffffff', "#499650")
)
), rownames = FALSE, options =list(paging = FALSE)
)
})
# END ---------------------------------------------------------------------
}
最佳答案
在 Shiny 中,您需要在 python 脚本中正确传递参数。一个简单的方法是在 python 脚本中定义一个函数并以 Shiny 的方式调用该函数。
这是您修改后的 python 脚本(编辑了 process_data 函数并添加了 run_script 函数)-
import os
import json
import time
# import threading
from pathlib import Path
import concurrent.futures
# from os.path import join, dirname
from ibm_watson import SpeechToTextV1
from ibm_watson.websocket import RecognizeCallback, AudioSource
from ibm_cloud_sdk_core.authenticators import IAMAuthenticator
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import pandas as pd
# Replace with your api key.
my_api_key = "api_key"
# You can add a directory path to Path() if you want to run
# the project from a different folder at some point.
directory = Path().absolute()
authenticator = IAMAuthenticator(my_api_key)
service = SpeechToTextV1(authenticator=authenticator)
service.set_service_url('https://api.us-east.speech-to-text.watson.cloud.ibm.com')
# I used this URL.
# service.set_service_url('https://stream.watsonplatform.net/speech-to-text/api')
models = service.list_models().get_result()
#print(json.dumps(models, indent=2))
model = service.get_model('en-US_BroadbandModel').get_result()
#print(json.dumps(model, indent=2))
# get data to a csv
########################RUN THIS PART SECOND#####################################
def process_data(json_data):
#print(f"Processing: {output_path.stem}")
cols = ["transcript", "confidence"]
dfdata = [[t[cols[0]], t[cols[1]]] for r in json_data.get('results') for t in r.get("alternatives")]
df0 = pd.DataFrame(data = dfdata, columns = cols)
df1 = pd.DataFrame(json_data.get("speaker_labels")).drop(["final", "confidence"], axis=1)
# test3 = pd.concat([df0, df1], axis=1)
test3 = pd.merge(df0, df1, left_index = True, right_index = True)
# sentiment
#print(f"Getting sentiment for: {output_path.stem}")
transcript = test3["transcript"]
transcript.dropna(inplace=True)
analyzer = SentimentIntensityAnalyzer()
text = transcript
scores = [analyzer.polarity_scores(txt) for txt in text]
# data = pd.DataFrame(text, columns = ["Text"])
data = transcript.to_frame(name="Text")
data2 = pd.DataFrame(scores)
# final_dataset= pd.concat([data, data2], axis=1)
final_dataset = pd.merge(data, data2, left_index = True, right_index = True)
# test4 = pd.concat([test3, final_dataset], axis=1)
test4 = pd.merge(test3, final_dataset, left_index = True, right_index = True)
test4.drop("Text", axis=1, inplace=True)
test4.rename(columns = {
"neg": "Negative",
"pos": "Positive",
"neu": "Neutral",
}, inplace=True)
# This is the name of the output csv file
# test4.to_csv(output_path, index = False)
return(test4)
def process_audio_file(filename, output_type = "csv"):
audio_file_path = directory.joinpath(filename)
# Update output path to consider `output_type` parameter.
out_path = directory.joinpath(f"{audio_file_path.stem}.{output_type}")
print(f"Current file: '{filename}'")
with open(audio_file_path, "rb") as audio_file:
data = service.recognize(
audio = audio_file,
speaker_labels = True,
content_type = "audio/wav",
inactivity_timeout = -1,
model = "en-US_NarrowbandModel",
continuous = True,
).get_result()
print(f"Speech-to-text complete for: '{filename}'")
# Return data and output path as collection.
return [data, out_path]
def main():
print("Running main()...")
# Default num. workers == min(32, os.cpu_count() + 4)
n_workers = os.cpu_count() + 2
# Create generator for all .wav files in folder (and subfolders).
file_gen = directory.glob("**/*.wav")
with concurrent.futures.ThreadPoolExecutor(max_workers = n_workers) as executor:
futures = {executor.submit(process_audio_file, f) for f in file_gen}
for future in concurrent.futures.as_completed(futures):
pkg = future.result()
process_data(*pkg)
def run_script (filename):
return(process_data(process_audio_file(filename)[0]))
Shiny 代码
library(shiny)
library(reticulate) # for reading Python code
library(dplyr)
library(stringr)
library(formattable) # for adding color to tables
library(shinybusy) # for busy bar
library(DT) # for dataTableOutput
use_python("C:/Users/ap396/Anaconda3/python")
ui <- fluidPage(
add_busy_bar(color = "#5d98ff"),
fileInput("wavFile", "SELECT .WAV FILE", accept = ".wav",multiple = T),
uiOutput("downloadData"),
dataTableOutput("transcript")
)
server <- function(input, output) {
# .WAV File Selector ------------------------------------------------------
file <- reactive({
req(input$wavFile) # Require a file before proceeding
files <- input$wavFile # Get file from user input
file = NULL
for (i in 1:nrow(files)){
print(file)
file = c(file,gsub("\\\\","/",files$datapath[i])) # Access the file path. Convert back slashes to forward slashes.
}
return(file)
})
# Transcribe and Clean ----------------------------------------------------
source_python('transcribe.py')
transcript <- reactive({
dft= data.frame(NULL)
for(j in 1:length(file())){
t0 = Sys.time()
transcript <- run_script(file()[j]) # Transcribe the file # COMMENT LINE OUT WHEN TESTING NON-TRANSCRIPTION FUNCTIONALITY
t1 = Sys.time() - t0
transcript$File = j; transcript$Time = t1
dft = rbind(dft,transcript)
}
return(dft) # Return the transcript
})
# Use a server-side download button ---------------------------------------
# ...so that the download button only appears after transcription
output$downloadData <- renderUI({
req(transcript())
downloadButton("handleDownload","Download CSV")
})
output$handleDownload <- downloadHandler(
filename = function() {
paste('Transcript ',Sys.Date(), ".csv", sep = "")
},
content = function(file) {
write.csv(transcript(), file, row.names = FALSE)
}
)
# Transcript table --------------------------------------------------------
output$transcript <- renderDataTable({
as.datatable(formattable(
transcript() %>%
select(File,
Time,
transcript,
confidence,
Negative,
Positive
),
list(Confidence = color_tile('#ffffff','#a2b3c8'),
Negative = color_tile('#ffffff', '#e74446'),
Positive = color_tile('#ffffff', "#499650")
)
), rownames = FALSE, options =list(paging = FALSE)
)
})
# END ---------------------------------------------------------------------
}
# Return a Shiny app object
shinyApp(ui = ui, server = server)
请注意, Shiny 的下载仅适用于网络浏览器,因此您必须在网络浏览器中打开应用程序
关于python - 如何将我的 python 应用程序制作/转换为 R Shiny 应用程序?这是一个脑筋急转弯!无法在 R 中找到 UI 需要什么更改,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/66769294/
我需要将文本放在 中在一个 Div 中,在另一个 Div 中,在另一个 Div 中。所以这是它的样子: #document Change PIN
奇怪的事情发生了。 我有一个基本的 html 代码。 html,头部, body 。(因为我收到了一些反对票,这里是完整的代码) 这是我的CSS: html { backgroun
我正在尝试将 Assets 中的一组图像加载到 UICollectionview 中存在的 ImageView 中,但每当我运行应用程序时它都会显示错误。而且也没有显示图像。 我在ViewDidLoa
我需要根据带参数的 perl 脚本的输出更改一些环境变量。在 tcsh 中,我可以使用别名命令来评估 perl 脚本的输出。 tcsh: alias setsdk 'eval `/localhome/
我使用 Windows 身份验证创建了一个新的 Blazor(服务器端)应用程序,并使用 IIS Express 运行它。它将显示一条消息“Hello Domain\User!”来自右上方的以下 Ra
这是我的方法 void login(Event event);我想知道 Kotlin 中应该如何 最佳答案 在 Kotlin 中通配符运算符是 * 。它指示编译器它是未知的,但一旦知道,就不会有其他类
看下面的代码 for story in book if story.title.length < 140 - var story
我正在尝试用 C 语言学习字符串处理。我写了一个程序,它存储了一些音乐轨道,并帮助用户检查他/她想到的歌曲是否存在于存储的轨道中。这是通过要求用户输入一串字符来完成的。然后程序使用 strstr()
我正在学习 sscanf 并遇到如下格式字符串: sscanf("%[^:]:%[^*=]%*[*=]%n",a,b,&c); 我理解 %[^:] 部分意味着扫描直到遇到 ':' 并将其分配给 a。:
def char_check(x,y): if (str(x) in y or x.find(y) > -1) or (str(y) in x or y.find(x) > -1):
我有一种情况,我想将文本文件中的现有行包含到一个新 block 中。 line 1 line 2 line in block line 3 line 4 应该变成 line 1 line 2 line
我有一个新项目,我正在尝试设置 Django 调试工具栏。首先,我尝试了快速设置,它只涉及将 'debug_toolbar' 添加到我的已安装应用程序列表中。有了这个,当我转到我的根 URL 时,调试
在 Matlab 中,如果我有一个函数 f,例如签名是 f(a,b,c),我可以创建一个只有一个变量 b 的函数,它将使用固定的 a=a1 和 c=c1 调用 f: g = @(b) f(a1, b,
我不明白为什么 ForEach 中的元素之间有多余的垂直间距在 VStack 里面在 ScrollView 里面使用 GeometryReader 时渲染自定义水平分隔线。 Scrol
我想知道,是否有关于何时使用 session 和 cookie 的指南或最佳实践? 什么应该和什么不应该存储在其中?谢谢! 最佳答案 这些文档很好地了解了 session cookie 的安全问题以及
我在 scipy/numpy 中有一个 Nx3 矩阵,我想用它制作一个 3 维条形图,其中 X 轴和 Y 轴由矩阵的第一列和第二列的值、高度确定每个条形的 是矩阵中的第三列,条形的数量由 N 确定。
假设我用两种不同的方式初始化信号量 sem_init(&randomsem,0,1) sem_init(&randomsem,0,0) 现在, sem_wait(&randomsem) 在这两种情况下
我怀疑该值如何存储在“WORD”中,因为 PStr 包含实际输出。? 既然Pstr中存储的是小写到大写的字母,那么在printf中如何将其给出为“WORD”。有人可以吗?解释一下? #include
我有一个 3x3 数组: var my_array = [[0,1,2], [3,4,5], [6,7,8]]; 并想获得它的第一个 2
我意识到您可以使用如下方式轻松检查焦点: var hasFocus = true; $(window).blur(function(){ hasFocus = false; }); $(win
我是一名优秀的程序员,十分优秀!