gpt4 book ai didi

python - 如何重置 Keras 指标?

转载 作者:行者123 更新时间:2023-12-03 14:22:39 28 4
gpt4 key购买 nike

为了做一些参数调整,我喜欢用 Keras 循环一些训练函数。但是,我意识到在使用 tensorflow.keras.metrics.AUC() 时作为度量,对于每个训练循环,都会将一个整数添加到 auc 度量名称(例如 auc_1、auc_2、...)。所以实际上,即使从训练函数中出来,keras 指标也会以某种方式存储。

这首先导致回调不再识别指标,并且还让我怀疑是否有其他东西存储,如模型权重。

如何重置指标以及是否有其他由 keras 存储的内容需要重置才能重新启动以进行培训?

您可以在下面找到一个最小的工作示例:

编辑:这个例子似乎只适用于 tensorflow 2.2

import numpy as np
import tensorflow as tf
import tensorflow.keras as keras
from tensorflow.keras.metrics import AUC


def dummy_network(input_shape):
model = keras.Sequential()
model.add(keras.layers.Dense(10,
input_shape=input_shape,
activation=tf.nn.relu,
kernel_initializer='he_normal',
kernel_regularizer=keras.regularizers.l2(l=1e-3)))

model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(11, activation='sigmoid'))

model.compile(optimizer='adagrad',
loss='binary_crossentropy',
metrics=[AUC()])
return model


def train():
CB_lr = tf.keras.callbacks.ReduceLROnPlateau(
monitor="val_auc",
patience=3,
verbose=1,
mode="max",
min_delta=0.0001,
min_lr=1e-6)

CB_es = tf.keras.callbacks.EarlyStopping(
monitor="val_auc",
min_delta=0.00001,
verbose=1,
patience=10,
mode="max",
restore_best_weights=True)
callbacks = [CB_lr, CB_es]
y = [np.ones((11, 1)) for _ in range(1000)]
x = [np.ones((37, 12, 1)) for _ in range(1000)]
dummy_dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(batch_size=100).repeat()
val_dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(batch_size=100).repeat()
model = dummy_network(input_shape=((37, 12, 1)))
model.fit(dummy_dataset, validation_data=val_dataset, epochs=2,
steps_per_epoch=len(x) // 100,
validation_steps=len(x) // 100, callbacks=callbacks)


for i in range(3):
print(f'\n\n **** Loop {i} **** \n\n')
train()

输出是:
 **** Loop 0 **** 


2020-06-16 14:37:46.621264: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x7f991e541f10 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-06-16 14:37:46.621296: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
Epoch 1/2
10/10 [==============================] - 0s 44ms/step - loss: 0.1295 - auc: 0.0000e+00 - val_loss: 0.0310 - val_auc: 0.0000e+00 - lr: 0.0010
Epoch 2/2
10/10 [==============================] - 0s 10ms/step - loss: 0.0262 - auc: 0.0000e+00 - val_loss: 0.0223 - val_auc: 0.0000e+00 - lr: 0.0010


**** Loop 1 ****


Epoch 1/2
10/10 [==============================] - ETA: 0s - loss: 0.4751 - auc_1: 0.0000e+00WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_auc` which is not available. Available metrics are: loss,auc_1,val_loss,val_auc_1,lr
WARNING:tensorflow:Early stopping conditioned on metric `val_auc` which is not available. Available metrics are: loss,auc_1,val_loss,val_auc_1,lr
10/10 [==============================] - 0s 36ms/step - loss: 0.4751 - auc_1: 0.0000e+00 - val_loss: 0.3137 - val_auc_1: 0.0000e+00 - lr: 0.0010
Epoch 2/2
10/10 [==============================] - ETA: 0s - loss: 0.2617 - auc_1: 0.0000e+00WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_auc` which is not available. Available metrics are: loss,auc_1,val_loss,val_auc_1,lr
WARNING:tensorflow:Early stopping conditioned on metric `val_auc` which is not available. Available metrics are: loss,auc_1,val_loss,val_auc_1,lr
10/10 [==============================] - 0s 10ms/step - loss: 0.2617 - auc_1: 0.0000e+00 - val_loss: 0.2137 - val_auc_1: 0.0000e+00 - lr: 0.0010


**** Loop 2 ****


Epoch 1/2
10/10 [==============================] - ETA: 0s - loss: 0.1948 - auc_2: 0.0000e+00WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_auc` which is not available. Available metrics are: loss,auc_2,val_loss,val_auc_2,lr
WARNING:tensorflow:Early stopping conditioned on metric `val_auc` which is not available. Available metrics are: loss,auc_2,val_loss,val_auc_2,lr
10/10 [==============================] - 0s 34ms/step - loss: 0.1948 - auc_2: 0.0000e+00 - val_loss: 0.0517 - val_auc_2: 0.0000e+00 - lr: 0.0010
Epoch 2/2
10/10 [==============================] - ETA: 0s - loss: 0.0445 - auc_2: 0.0000e+00WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_auc` which is not available. Available metrics are: loss,auc_2,val_loss,val_auc_2,lr
WARNING:tensorflow:Early stopping conditioned on metric `val_auc` which is not available. Available metrics are: loss,auc_2,val_loss,val_auc_2,lr
10/10 [==============================] - 0s 10ms/step - loss: 0.0445 - auc_2: 0.0000e+00 - val_loss: 0.0389 - val_auc_2: 0.0000e+00 - lr: 0.0010

最佳答案

您的可重现示例在几个地方失败了,所以我只更改了一些内容(我使用的是 TF 2.1)。让它运行后,我可以通过指定 metrics=[AUC(name='auc')] 去掉额外的度量名称。 .这是完整的(固定的)可重现示例:

import numpy as np
import tensorflow as tf
import tensorflow.keras as keras
from tensorflow.keras.metrics import AUC


def dummy_network(input_shape):
model = keras.Sequential()
model.add(keras.layers.Dense(10,
input_shape=input_shape,
activation=tf.nn.relu,
kernel_initializer='he_normal',
kernel_regularizer=keras.regularizers.l2(l=1e-3)))

model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(11, activation='softmax'))

model.compile(optimizer='adagrad',
loss='binary_crossentropy',
metrics=[AUC(name='auc')])
return model


def train():
CB_lr = tf.keras.callbacks.ReduceLROnPlateau(
monitor="val_auc",
patience=3,
verbose=1,
mode="max",
min_delta=0.0001,
min_lr=1e-6)

CB_es = tf.keras.callbacks.EarlyStopping(
monitor="val_auc",
min_delta=0.00001,
verbose=1,
patience=10,
mode="max",
restore_best_weights=True)
callbacks = [CB_lr, CB_es]
y = tf.keras.utils.to_categorical([np.random.randint(0, 11) for _ in range(1000)])
x = [np.ones((37, 12, 1)) for _ in range(1000)]
dummy_dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(batch_size=100).repeat()
val_dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(batch_size=100).repeat()
model = dummy_network(input_shape=((37, 12, 1)))
model.fit(dummy_dataset, validation_data=val_dataset, epochs=2,
steps_per_epoch=len(x) // 100,
validation_steps=len(x) // 100, callbacks=callbacks)


for i in range(3):
print(f'\n\n **** Loop {i} **** \n\n')
train()
Train for 10 steps, validate for 10 steps
Epoch 1/2
1/10 [==>...........................] - ETA: 6s - loss: 0.3426 - auc: 0.4530
7/10 [====================>.........] - ETA: 0s - loss: 0.3318 - auc: 0.4895
10/10 [==============================] - 1s 117ms/step - loss: 0.3301 -
auc: 0.4893 - val_loss: 0.3222 - val_auc: 0.5085

发生这种情况是因为每个循环,您都通过执行以下操作创建了一个没有指定名称的新指标: metrics=[AUC()] .在循环的第一次迭代中,TF 自动在命名空间中创建了一个名为 auc 的变量。 ,但在循环的第二次迭代中,名称 'auc'已经被占用,所以 TF 将其命名为 auc_1因为您没有指定名称。但是,您的回调被设置为基于 auc ,这是该模型没有的度量(它是上一个循环中模型的度量)。所以,你要么做 name='auc'并覆盖先前的指标名称,或在循环之外定义它,如下所示:
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras
from tensorflow.keras.metrics import AUC

auc = AUC()

def dummy_network(input_shape):
model = keras.Sequential()
model.add(keras.layers.Dense(10,
input_shape=input_shape,
activation=tf.nn.relu,
kernel_initializer='he_normal',
kernel_regularizer=keras.regularizers.l2(l=1e-3)))

model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(11, activation='softmax'))
model.compile(optimizer='adagrad',
loss='binary_crossentropy',
metrics=[auc])
return model

不用担心 keras重置指标。它负责处理 fit() 中的所有内容方法。如果你想要更多的灵活性和/或自己做,我建议使用自定义训练循环,并自己重置:
auc = tf.keras.metrics.AUC()

auc.update_state(np.random.randint(0, 2, 10), np.random.randint(0, 2, 10))

print(auc.result())

auc.reset_states()

print(auc.result())
Out[6]: <tf.Tensor: shape=(), dtype=float32, numpy=0.875>  # state updated
Out[8]: <tf.Tensor: shape=(), dtype=float32, numpy=0.0>  # state reset

关于python - 如何重置 Keras 指标?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62408749/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com