gpt4 book ai didi

python - imblearn 管道是否会关闭采样以进行测试?

转载 作者:行者123 更新时间:2023-12-03 14:06:36 26 4
gpt4 key购买 nike

让我们假设以下代码(来自 imblearn example on pipelines)

...    
# Instanciate a PCA object for the sake of easy visualisation
pca = PCA(n_components=2)

# Create the samplers
enn = EditedNearestNeighbours()
renn = RepeatedEditedNearestNeighbours()

# Create the classifier
knn = KNN(1)

# Make the splits
X_train, X_test, y_train, y_test = tts(X, y, random_state=42)

# Add one transformers and two samplers in the pipeline object
pipeline = make_pipeline(pca, enn, renn, knn)

pipeline.fit(X_train, y_train)
y_hat = pipeline.predict(X_test)
我想确保在执行 pipeline.predict(X_test) 时采样程序 ennrenn不会被执行(当然 pca 必须被执行)。
  1. First, it is clear to me that over-, under-, and mixed-sampling areprocedures to be applied to the training set, not to thetest/validation set. Please correct me here if I am wrong.

  2. I browsed though the imblearn Pipeline code but I could not findthe predict method there.

  3. I also would like to be sure that this correct behavior works whenthe pipeline is inside a GridSearchCV


我只需要确保 imblearn.Pipeline 会发生这种情况。 .
编辑:2020-08-28
@wundermahn 答案就是我所需要的。
此编辑只是补充说这是应该使用 imblearn.Pipeline 的原因。用于不平衡的预处理而不是 sklearn.Pipeline imblearn 无处可去文档我找到了解释为什么需要 imblearn.Pipeline当有 sklearn.Pipeline

最佳答案

很好的问题。要按照您发布的顺序浏览它们:

  1. First, it is clear to me that over-, under-, and mixed-sampling are procedures to be applied to the training set, not to thetest/validation set. Please correct me here if I am wrong.

那是正确的。您当然不想在 的数据上测试(无论是在您的 test 还是 validation 数据上)不是 代表实际的、实时的、“生产”数据集。您真的应该只将其应用于培训。请注意,如果您使用交叉折叠验证等技术,则应将采样单独应用于每个折叠,如 this IEEE paper 所示。 .
  1. I browsed though the imblearn Pipeline code but I could not find the predict method there.

我假设您找到了 imblearn.pipeline source code ,所以如果你这样做了,你想做的是看看 fit_predict方法:
 @if_delegate_has_method(delegate="_final_estimator")
def fit_predict(self, X, y=None, **fit_params):
"""Apply `fit_predict` of last step in pipeline after transforms.
Applies fit_transforms of a pipeline to the data, followed by the
fit_predict method of the final estimator in the pipeline. Valid
only if the final estimator implements fit_predict.
Parameters
----------
X : iterable
Training data. Must fulfill input requirements of first step of
the pipeline.
y : iterable, default=None
Training targets. Must fulfill label requirements for all steps
of the pipeline.
**fit_params : dict of string -> object
Parameters passed to the ``fit`` method of each step, where
each parameter name is prefixed such that parameter ``p`` for step
``s`` has key ``s__p``.
Returns
-------
y_pred : ndarray of shape (n_samples,)
The predicted target.
"""
Xt, yt, fit_params = self._fit(X, y, **fit_params)
with _print_elapsed_time('Pipeline',
self._log_message(len(self.steps) - 1)):
y_pred = self.steps[-1][-1].fit_predict(Xt, yt, **fit_params)
return y_pred
在这里,我们可以看到 pipeline使用 .predict管道中最终估算器的方法,在您发布的示例中, scikit-learn's knn :
 def predict(self, X):
"""Predict the class labels for the provided data.
Parameters
----------
X : array-like of shape (n_queries, n_features), \
or (n_queries, n_indexed) if metric == 'precomputed'
Test samples.
Returns
-------
y : ndarray of shape (n_queries,) or (n_queries, n_outputs)
Class labels for each data sample.
"""
X = check_array(X, accept_sparse='csr')

neigh_dist, neigh_ind = self.kneighbors(X)
classes_ = self.classes_
_y = self._y
if not self.outputs_2d_:
_y = self._y.reshape((-1, 1))
classes_ = [self.classes_]

n_outputs = len(classes_)
n_queries = _num_samples(X)
weights = _get_weights(neigh_dist, self.weights)

y_pred = np.empty((n_queries, n_outputs), dtype=classes_[0].dtype)
for k, classes_k in enumerate(classes_):
if weights is None:
mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
else:
mode, _ = weighted_mode(_y[neigh_ind, k], weights, axis=1)

mode = np.asarray(mode.ravel(), dtype=np.intp)
y_pred[:, k] = classes_k.take(mode)

if not self.outputs_2d_:
y_pred = y_pred.ravel()

return y_pred
  1. I also would like to be sure that this correct behaviour works when the pipeline is inside a GridSearchCV

这种假设上述两个假设是正确的,我认为这意味着您想要一个 complete, minimal, reproducible example这在 GridSearchCV 中工作。来自 scikit-learn on this 的大量文档,但是我使用 knn 创建的示例在下面:
import pandas as pd, numpy as np

from imblearn.over_sampling import SMOTE
from imblearn.pipeline import Pipeline
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_digits
from sklearn.model_selection import GridSearchCV, train_test_split

param_grid = [
{
'classification__n_neighbors': [1,3,5,7,10],
}
]

X, y = load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.20)

pipe = Pipeline([
('sampling', SMOTE()),
('classification', KNeighborsClassifier())
])

grid = GridSearchCV(pipe, param_grid=param_grid)
grid.fit(X_train, y_train)
mean_scores = np.array(grid.cv_results_['mean_test_score'])
print(mean_scores)

# [0.98051926 0.98121129 0.97981998 0.98050474 0.97494193]
你的直觉很准,干得好:)

关于python - imblearn 管道是否会关闭采样以进行测试?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63520908/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com