- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我需要一个快速的逐元素最大值,它将 n×m scipy 稀疏矩阵元素的每一行与稀疏的 1×m 矩阵进行比较。这在 Numpy 中使用 np.maximum(mat, vec)
完美运行通过 Numpy 的广播。
然而,Scipy 的 .maximum()
没有广播。我的矩阵很大,所以我不能将它转换为一个 numpy 数组。
我目前的解决方法是使用 mat[row,:].maximum(vec)
遍历多行垫子.这个大循环是破坏我的代码效率(必须多次完成)。我的缓慢解决方案在下面的第二个代码片段中 - 有更好的解决方案吗?
# Example
import numpy as np
from scipy import sparse
mat = sparse.csc_matrix(np.arange(12).reshape((4,3)))
vec = sparse.csc_matrix([-1, 5, 100])
# Numpy's np.maximum() gives the **desired result** using broadcasting (but it can't handle sparse matrices):
numpy_result = np.maximum( mat.toarray(), vec.toarray() )
print( numpy_result )
# [[ 0 5 100]
# [ 3 5 100]
# [ 6 7 100]
# [ 9 10 100]]
# Scipy only compares the top row of mat to vec (no broadcasting!):
scipy_result = mat.maximum(vec)
print( scipy_result.toarray() )
# [[ 0 5 100]
# [ 3 4 5]
# [ 6 7 8]
# [ 9 10 11]]
#Reversing the order of mat and vec in the call to vec.maximum(mat) results in a single row output, and also frequently seg faults (!):
用于速度测试的更大示例和当前解决方案
import numpy as np
from scipy import sparse
import timeit
mat = sparse.csc_matrix( sparse.random(20000, 4000, density=.01, data_rvs=lambda s: np.random.randint(0, 5000, size=s)) )
vec = sparse.csc_matrix( sparse.random(1, 4000, density=.01, data_rvs=lambda s: np.random.randint(0, 5000, size=s)) )
def sparse_elementwise_maximum(mat, vec):
output = sparse.lil_matrix(mat.shape)
for row_idx in range( mat.shape[0] ):
output[row_idx] = mat[row_idx,:].maximum(vec)
return output
# Time it
num_timing_loops = 3.0
starttime = timeit.default_timer()
for _ in range(int(num_timing_loops)):
sparse_elementwise_maximum(mat, vec)
print('time per call is:', (timeit.default_timer() - starttime)/num_timing_loops, 'seconds')
# 15 seconds per call (way too slow!)
编辑
最佳答案
低级方法
与往常一样,您可以考虑如何为该操作构建适当的稀疏矩阵格式,对于 csr 矩阵,主要组件是 shape、data_arr、indices 和 ind_ptr。
使用 scipy.sparse.csr 对象的这些部分,使用编译语言(C、C++、Cython、Python-Numba)实现高效算法非常简单,但可能有点耗时。 Int 他的实现我使用了 Numba,但是将它移植到 C++ 应该很容易(语法更改)并且可能避免切片。
实现(初试)
import numpy as np
import numba as nb
# get all needed components of the csr object and create a resulting csr object at the end
def sparse_elementwise_maximum_wrap(mat,vec):
mat_csr=mat.tocsr()
vec_csr=vec.tocsr()
shape_mat=mat_csr.shape
indices_mat=mat_csr.indices
indptr_mat=mat_csr.indptr
data_mat=mat_csr.data
indices_vec=vec_csr.indices
data_vec=vec_csr.data
res=sparse_elementwise_maximum_nb(indices_mat,indptr_mat,data_mat,shape_mat,indices_vec,data_vec)
res=sparse.csr_matrix(res, shape=shape_mat)
return res
@nb.njit(cache=True)
def sparse_elementwise_maximum_nb(indices_mat,indptr_mat,data_mat,shape_mat,vec_row_ind,vec_row_data):
data_res=[]
indices_res=[]
indptr_mat_res=[]
indptr_mat_=0
indptr_mat_res.append(indptr_mat_)
for row_idx in range(shape_mat[0]):
mat_row_ind=indices_mat[indptr_mat[row_idx]:indptr_mat[row_idx+1]]
mat_row_data=data_mat[indptr_mat[row_idx]:indptr_mat[row_idx+1]]
mat_ptr=0
vec_ptr=0
while mat_ptr<mat_row_ind.shape[0] and vec_ptr<vec_row_ind.shape[0]:
ind_mat=mat_row_ind[mat_ptr]
ind_vec=vec_row_ind[vec_ptr]
#value for both matrix and vector is present
if ind_mat==ind_vec:
data_res.append(max(mat_row_data[mat_ptr],vec_row_data[vec_ptr]))
indices_res.append(ind_mat)
mat_ptr+=1
vec_ptr+=1
indptr_mat_+=1
#only value for the matrix is present vector is assumed 0
elif ind_mat<ind_vec:
if mat_row_data[mat_ptr] >0:
data_res.append(mat_row_data[mat_ptr])
indices_res.append(ind_mat)
indptr_mat_+=1
mat_ptr+=1
#only value for the vector is present matrix is assumed 0
else:
if vec_row_data[vec_ptr] >0:
data_res.append(vec_row_data[vec_ptr])
indices_res.append(ind_vec)
indptr_mat_+=1
vec_ptr+=1
for i in range(mat_ptr,mat_row_ind.shape[0]):
if mat_row_data[i] >0:
data_res.append(mat_row_data[i])
indices_res.append(mat_row_ind[i])
indptr_mat_+=1
for i in range(vec_ptr,vec_row_ind.shape[0]):
if vec_row_data[i] >0:
data_res.append(vec_row_data[i])
indices_res.append(vec_row_ind[i])
indptr_mat_+=1
indptr_mat_res.append(indptr_mat_)
return np.array(data_res),np.array(indices_res),np.array(indptr_mat_res)
实现(优化)
@nb.njit(cache=True)
def sparse_elementwise_maximum_nb(indices_mat,indptr_mat,data_mat,shape_mat,vec_row_ind,vec_row_data):
mem_step=5_000_000
#preallocate memory for 5M non-zero elements (60 MB in this example)
data_res=np.empty(mem_step,dtype=data_mat.dtype)
indices_res=np.empty(mem_step,dtype=np.int32)
data_res_p=0
indptr_mat_res=np.empty((shape_mat[0]+1),dtype=np.int32)
indptr_mat_res[0]=0
indptr_mat_res_p=1
indptr_mat_=0
for row_idx in range(shape_mat[0]):
mat_row_ind=indices_mat[indptr_mat[row_idx]:indptr_mat[row_idx+1]]
mat_row_data=data_mat[indptr_mat[row_idx]:indptr_mat[row_idx+1]]
#check if resizing is necessary
if data_res.shape[0]<data_res_p+shape_mat[1]:
#add at least memory for another mem_step elements
size_to_add=mem_step
if shape_mat[1] >size_to_add:
size_to_add=shape_mat[1]
data_res_2 =np.empty(data_res.shape[0] +size_to_add,data_res.dtype)
indices_res_2=np.empty(indices_res.shape[0]+size_to_add,indices_res.dtype)
for i in range(data_res_p):
data_res_2[i]=data_res[i]
indices_res_2[i]=indices_res[i]
data_res=data_res_2
indices_res=indices_res_2
mat_ptr=0
vec_ptr=0
while mat_ptr<mat_row_ind.shape[0] and vec_ptr<vec_row_ind.shape[0]:
ind_mat=mat_row_ind[mat_ptr]
ind_vec=vec_row_ind[vec_ptr]
#value for both matrix and vector is present
if ind_mat==ind_vec:
data_res[data_res_p]=max(mat_row_data[mat_ptr],vec_row_data[vec_ptr])
indices_res[data_res_p]=ind_mat
data_res_p+=1
mat_ptr+=1
vec_ptr+=1
indptr_mat_+=1
#only value for the matrix is present vector is assumed 0
elif ind_mat<ind_vec:
if mat_row_data[mat_ptr] >0:
data_res[data_res_p]=mat_row_data[mat_ptr]
indices_res[data_res_p]=ind_mat
data_res_p+=1
indptr_mat_+=1
mat_ptr+=1
#only value for the vector is present matrix is assumed 0
else:
if vec_row_data[vec_ptr] >0:
data_res[data_res_p]=vec_row_data[vec_ptr]
indices_res[data_res_p]=ind_vec
data_res_p+=1
indptr_mat_+=1
vec_ptr+=1
for i in range(mat_ptr,mat_row_ind.shape[0]):
if mat_row_data[i] >0:
data_res[data_res_p]=mat_row_data[i]
indices_res[data_res_p]=mat_row_ind[i]
data_res_p+=1
indptr_mat_+=1
for i in range(vec_ptr,vec_row_ind.shape[0]):
if vec_row_data[i] >0:
data_res[data_res_p]=vec_row_data[i]
indices_res[data_res_p]=vec_row_ind[i]
data_res_p+=1
indptr_mat_+=1
indptr_mat_res[indptr_mat_res_p]=indptr_mat_
indptr_mat_res_p+=1
return data_res[:data_res_p],indices_res[:data_res_p],indptr_mat_res
开始时分配的最大内存
@nb.njit(cache=True)
def sparse_elementwise_maximum_nb(indices_mat,indptr_mat,data_mat,shape_mat,vec_row_ind,vec_row_data,shrink_to_fit):
max_non_zero=shape_mat[0]*vec_row_data.shape[0]+data_mat.shape[0]
data_res=np.empty(max_non_zero,dtype=data_mat.dtype)
indices_res=np.empty(max_non_zero,dtype=np.int32)
data_res_p=0
indptr_mat_res=np.empty((shape_mat[0]+1),dtype=np.int32)
indptr_mat_res[0]=0
indptr_mat_res_p=1
indptr_mat_=0
for row_idx in range(shape_mat[0]):
mat_row_ind=indices_mat[indptr_mat[row_idx]:indptr_mat[row_idx+1]]
mat_row_data=data_mat[indptr_mat[row_idx]:indptr_mat[row_idx+1]]
mat_ptr=0
vec_ptr=0
while mat_ptr<mat_row_ind.shape[0] and vec_ptr<vec_row_ind.shape[0]:
ind_mat=mat_row_ind[mat_ptr]
ind_vec=vec_row_ind[vec_ptr]
#value for both matrix and vector is present
if ind_mat==ind_vec:
data_res[data_res_p]=max(mat_row_data[mat_ptr],vec_row_data[vec_ptr])
indices_res[data_res_p]=ind_mat
data_res_p+=1
mat_ptr+=1
vec_ptr+=1
indptr_mat_+=1
#only value for the matrix is present vector is assumed 0
elif ind_mat<ind_vec:
if mat_row_data[mat_ptr] >0:
data_res[data_res_p]=mat_row_data[mat_ptr]
indices_res[data_res_p]=ind_mat
data_res_p+=1
indptr_mat_+=1
mat_ptr+=1
#only value for the vector is present matrix is assumed 0
else:
if vec_row_data[vec_ptr] >0:
data_res[data_res_p]=vec_row_data[vec_ptr]
indices_res[data_res_p]=ind_vec
data_res_p+=1
indptr_mat_+=1
vec_ptr+=1
for i in range(mat_ptr,mat_row_ind.shape[0]):
if mat_row_data[i] >0:
data_res[data_res_p]=mat_row_data[i]
indices_res[data_res_p]=mat_row_ind[i]
data_res_p+=1
indptr_mat_+=1
for i in range(vec_ptr,vec_row_ind.shape[0]):
if vec_row_data[i] >0:
data_res[data_res_p]=vec_row_data[i]
indices_res[data_res_p]=vec_row_ind[i]
data_res_p+=1
indptr_mat_+=1
indptr_mat_res[indptr_mat_res_p]=indptr_mat_
indptr_mat_res_p+=1
if shrink_to_fit==True:
data_res=np.copy(data_res[:data_res_p])
indices_res=np.copy(indices_res[:data_res_p])
else:
data_res=data_res[:data_res_p]
indices_res=indices_res[:data_res_p]
return data_res,indices_res,indptr_mat_res
# get all needed components of the csr object and create a resulting csr object at the end
def sparse_elementwise_maximum_wrap(mat,vec,shrink_to_fit=True):
mat_csr=mat.tocsr()
vec_csr=vec.tocsr()
shape_mat=mat_csr.shape
indices_mat=mat_csr.indices
indptr_mat=mat_csr.indptr
data_mat=mat_csr.data
indices_vec=vec_csr.indices
data_vec=vec_csr.data
res=sparse_elementwise_maximum_nb(indices_mat,indptr_mat,data_mat,shape_mat,indices_vec,data_vec,shrink_to_fit)
res=sparse.csr_matrix(res, shape=shape_mat)
return res
计时
import numpy as np
from scipy import sparse
mat = sparse.csr_matrix( sparse.random(20000, 4000, density=.01, data_rvs=lambda s: np.random.randint(0, 5000, size=s)) )
vec = sparse.csr_matrix( sparse.random(1, 4000, density=.01, data_rvs=lambda s: np.random.randint(0, 5000, size=s)) )
%timeit output=sparse_elementwise_maximum(mat, vec)
#for csc input
37.9 s ± 224 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
#for csr input
10.7 s ± 90.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
#Daniel F
%timeit sparse_maximum(mat, vec)
164 ms ± 1.74 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
#low level implementation (first try)
%timeit res=sparse_elementwise_maximum_wrap(mat,vec)
89.7 ms ± 2.51 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
#low level implementation (optimized, csr)
%timeit res=sparse_elementwise_maximum_wrap(mat,vec)
16.5 ms ± 122 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
#low level implementation (preallocation, without copying at the end)
%timeit res=sparse_elementwise_maximum_wrap(mat,vec)
16.5 ms ± 122 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
#low level implementation (preallocation, with copying at the end)
%timeit res=sparse_elementwise_maximum_wrap(mat,vec)
16.5 ms ± 122 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit res=sparse_elementwise_maximum_wrap(mat,vec,shrink_to_fit=False)
14.9 ms ± 110 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit res=sparse_elementwise_maximum_wrap(mat,vec,shrink_to_fit=True)
21.7 ms ± 399 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
#For comparison, copying the result takes
%%timeit
np.copy(res.data)
np.copy(res.indices)
np.copy(res.indptr)
7.8 ms ± 47.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
关于python - 具有广播的稀疏 Scipy 矩阵和向量的元素最大值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64872560/
我想用一个向量执行以下操作。 a = np.array(np.arange(0, 4, 1)) 我想得到一个乘法,结果是一个矩阵 | 0 1 2 3 4 -| - - - - - - - 0
正如标题所述,我正在尝试使用 gsub,其中我使用向量作为“模式”和“替换”。目前,我的代码如下所示: names(x1) names(x1) [1] "2110023264A.Ms.Amp
所以当我需要做一些线性代数时,我更容易将向量视为列向量。因此,我更喜欢 (n,1) 这样的形状。 形状 (n,) 和 (n,1) 之间是否存在显着的内存使用差异? 什么是首选方式? 以及如何将 (n,
我不明白为什么 seq() 可以根据元素中是否存在小数点输出不同的类,而 c() 总是创建一个 num向量,无论是否存在小数。 例如: seqDec <- seq(1, 2, 0.5) # num v
机器学习与传统编程的一个重要区别在于机器学习比传统编程涉及了更多的数学知识。不过,随着机器学习的飞速发展,各种框架应运而生,在数据分析等应用中使用机器学习时,使用现成的库和框架成为常态,似乎越来越不需
寻找有关如何将 RegEnable 用作向量的示例/建议。此外,我想控制输入和使能信号成为 Vector 中寄存器索引的函数。 首先,我如何声明 RegEnable() 的 Vector,其次如何迭代
假设我有一个包含变量名称的向量 v1,我想为每个变量分配一个值(存储在单独的向量中)。我如何在没有迭代的情况下做到这一点? v1 <- c("a","b","c") v2 <- c(1,2,3) 我想
R 提供了三种类型来存储同质对象列表:向量、矩阵 和数组。 据我所知: 向量是一维数组的特殊情况 矩阵是二维数组的特例 数组还可以具有任意维度级别(包括 1 和 2)。 在向量上使用一维数组和在矩阵上
我正在绕着numpy/scipy中的所有选项转圈。点积、乘法、matmul、tensordot、einsum 等 我想将一维向量与二维矩阵(这将是稀疏csr)相乘并对结果求和,这样我就有了一个一维向量
我是一个 IDL 用户,正在慢慢切换到 numpy/scipy,并且有一个操作我在 IDL 中非常经常做,但无法用 numpy 重现: IDL> a = [2., 4] IDL> b = [3., 5
在python计算机图形工具包中,有一个vec3类型用于表示三分量向量,但是我如何进行以下乘法: 三分量向量乘以其转置结果得到 3*3 矩阵,如下例所示: a = vec3(1,1,1) matrix
我正在构建一款小型太空射击游戏。当涉及到空间物理学时,我曾经遇到过数学问题。 用文字描述如下:有一个最大速度。因此,如果您全速行驶,您的飞船将在屏幕上一遍又一遍地移动,就像在旧的小行星游戏中一样。如果
我正在尝试在 python 中实现 Vector3 类。如果我用 c++ 或 c# 编写 Vector3 类,我会将 X、Y 和 Z 成员存储为 float ,但在 python 中,我读到鸭式是要走
我是 Spark 和 Scala 的新手,我正在尝试阅读有关 MLlib 的文档。 http://spark.apache.org/docs/1.4.0/mllib-data-types.html上的
我有一个包含四个逻辑向量的数据框, v1 , v2 , v3 , v4 是对还是错。我需要根据 boolean 向量的组合对数据帧的每一行进行分类(例如, "None" , "v1 only" , "
我正在创建一个可视化来说明主成分分析的工作原理,方法是绘制一些实际数据的特征值(为了说明的目的,我将子集化为二维)。 我想要来自 this fantastic PCA tutorial 的这两个图的组
我有以下排序向量: > v [1] -1 0 1 2 4 5 2 3 4 5 7 8 5 6 7 8 10 11 如何在不遍历整个向量的情况下删除 -1、0 和 11
有什么方法可以让 R 对向量和其他序列数据结构使用基于零的索引,例如在 C 和 python 中。 我们有一些代码在 C 中进行一些数值处理,我们正在考虑将其移植到 R 中以利用其先进的统计功能,但是
我有一个函数可以查询我的数据库中最近的 X 个条目,它返回一个 map 向量,如下所示: [{:itemID "item1" :category "stuff" :price 5} {:itemI
我有 ([[AA ww me bl qw 100] [AA ee rr aa aa 100] [AA qq rr aa aa 90]] [[CC ww me bl qw 100] [CC ee rr
我是一名优秀的程序员,十分优秀!