gpt4 book ai didi

r - 将新列添加到包含许多变量的data.table中

转载 作者:行者123 更新时间:2023-12-03 13:56:17 25 4
gpt4 key购买 nike

我想基于分组计算将许多新列同时添加到data.table中。我的数据的一个有效示例如下所示:

     Time     Stock x1 x2 x3
1: 2014-08-22 A 15 27 34
2: 2014-08-23 A 39 44 29
3: 2014-08-24 A 20 50 5
4: 2014-08-22 B 42 22 43
5: 2014-08-23 B 44 45 12
6: 2014-08-24 B 3 21 2


现在,我想 scalesum许多变量来获得如下输出:

         Time Stock x1 x2 x3   x2_scale   x3_scale x2_sum x3_sum
1: 2014-08-22 A 15 27 34 -1.1175975 0.7310560 121 68
2: 2014-08-23 A 39 44 29 0.3073393 0.4085313 121 68
3: 2014-08-24 A 20 50 5 0.8102582 -1.1395873 121 68
4: 2014-08-22 B 42 22 43 -0.5401315 1.1226726 88 57
5: 2014-08-23 B 44 45 12 1.1539172 -0.3274462 88 57
6: 2014-08-24 B 3 21 2 -0.6137858 -0.7952265 88 57


我的问题的暴力实施是:

library(data.table)

set.seed(123)
d <- data.table(Time = rep(seq.Date( Sys.Date(), length=3, by="day" )),
Stock = rep(LETTERS[1:2], each=3 ),
x1 = sample(1:50, 6),
x2 = sample(1:50, 6),
x3 = sample(1:50, 6))

d[,x2_scale:=scale(x2),by=Stock]
d[,x3_scale:=scale(x3),by=Stock]
d[,x2_sum:=sum(x2),by=Stock]
d[,x3_sum:=sum(x3),by=Stock]


其他描述类似问题的帖子( Add multiple columns to R data.table in one function call?Assign multiple columns using := in data.table, by group)提出以下解决方案:

  d[, c("x2_scale","x3_scale"):=list(scale(x2),scale(x3)), by=Stock]
d[, c("x2_sum","x3_sum"):=list(sum(x2),sum(x3)), by=Stock]


但是同样,这会使很多变量变得非常混乱,并且还会出现 scale错误消息(但不会出现 sum错误消息,因为这不会返回向量)。

是否有更有效的方法来达到所需的结果(请记住我的实际数据集很大)?

最佳答案

我认为,只需对您的上一个代码进行少量修改,就可以轻松地对所需的多个变量进行选择

vars <- c("x2", "x3") # <- Choose the variable you want to operate on

d[, paste0(vars, "_", "scale") := lapply(.SD, function(x) scale(x)[, 1]), .SDcols = vars, by = Stock]
d[, paste0(vars, "_", "sum") := lapply(.SD, sum), .SDcols = vars, by = Stock]

## Time Stock x1 x2 x3 x2_scale x3_scale x2_sum x3_sum
## 1: 2014-08-22 A 13 14 32 -1.1338934 1.1323092 87 44
## 2: 2014-08-23 A 25 39 9 0.7559289 -0.3701780 87 44
## 3: 2014-08-24 A 18 34 3 0.3779645 -0.7621312 87 44
## 4: 2014-08-22 B 44 8 6 -0.4730162 -0.7258662 59 32
## 5: 2014-08-23 B 49 3 18 -0.6757374 1.1406469 59 32
## 6: 2014-08-24 B 15 48 8 1.1487535 -0.4147807 59 32


对于简单的函数(不需要像 scale这样的特殊处理),您可以轻松地执行类似的操作

vars <- c("x2", "x3") # <- Define the variable you want to operate on
funs <- c("min", "max", "mean", "sum") # <- define your function
for(i in funs){
d[, paste0(vars, "_", i) := lapply(.SD, eval(i)), .SDcols = vars, by = Stock]
}

关于r - 将新列添加到包含许多变量的data.table中,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/25443658/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com