- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
请参阅下面的 EDIT ,最初的帖子现在几乎没有任何意义,但问题仍然存在。
我开发了一个神经网络来语义分割图像。我研究了各种损失函数(分类交叉熵 (CCE)、权重 CCE、焦点损失、tversky 损失、jaccard 损失、焦点 tversky 损失等),这些函数试图处理高度偏斜的类表示,但都没有产生预期的效果。我的顾问提到尝试创建一个自定义损失函数,该函数忽略特定类别的误报(但仍会惩罚误报)。
我有一个 6 类问题,我的网络设置为在单热编码的真实数据中工作/使用。因此,我的损失函数将接受两个张量 y_true, y_pred
,形状为 (batch, row, col, class)
(当前为 (8, 128, 128, 6)
)。为了能够利用我已经探索过的损失,我想更改 y_pred
以将特定类别(第 0 个类别)的预测值设置为始终正确。这就是 y_true == class 0
设置 y_pred == class 0
的地方,否则什么都不做。
由于 tensorflow 张量是不可变的,我花了太多时间试图创建这个损失函数。我的第一次尝试(我是通过我对 numpy
的经验而获得的)
def weighted_categorical_crossentropy_ignore(weights):
weights = K.variable(weights)
def loss(y_true, y_pred):
y_pred[tf.where(y_true == [1, 0, 0, 0, 0, 0])] = [1, 0, 0, 0, 0, 0]
# Scale predictions so that the class probs of each sample sum to 1
y_pred /= K.sum(y_pred, axis=-1, keepdims=True)
# Clip to prevent NaN's and Inf's
y_pred = K.clip(y_pred, K.epsilon(), 1 - K.epsilon())
loss = y_true * K.log(y_pred) * weights
loss = -K.sum(loss, -1)
return loss
return loss
虽然显然我不能改变
y_pred
所以这次尝试失败了。我最终创建了一些怪物,试图通过迭代
[batch, row, col]
并进行比较来“构建”张量。虽然这种(ese)尝试在技术上没有失败,但他们从未真正开始训练。我认为计算损失需要几分钟的时间。
numpy
执行必要的计算。但是保持认知我基本上仅限于实例化“简单”张量(即
ones
、
zeros
)并且只执行“简单”操作,如逐元素乘法、加法和整形。于是我来到了这个 SSCCE
import numpy as np
from tensorflow.keras.utils import to_categorical
# Generate the "images" at random
true_flat = np.argmax(np.random.rand(1, 2, 2, 4), axis=3).astype('int')
true = to_categorical(true_flat, num_classes=4).astype('int')
pred_flat = np.argmax(np.random.rand(1, 2, 2, 4), axis=3).astype('int')
pred = to_categorical(pred_flat, num_classes=4).astype('int')
print('True:\n', true_flat)
print('Pred:\n', pred_flat)
# Create a mask representing an all "class 0" image
class_zero_label = np.array([1, 0, 0, 0])
czl_all = class_zero_label * np.ones(true.shape).astype('int')
# Mask both the truth and pred to locate class 0 pixels
czl_true_locs = czl_all * true
czl_pred_locs = czl_all * pred
# Subtract to create "addition" matrix
a = (czl_true_locs - czl_pred_locs) * czl_true_locs
print('a:\n', a)
# Do this
m = ((a + 1) - (a * 2))
print('m - ', m.shape, ':\n', m)
# Pull the front entry from 'm' and "expand" its value
#x = (m[:, :, :, 0].flatten() * np.ones(pred.shape).astype('int')).T.reshape(pred.shape)
m_front = m[:, :, :, 0]
print('m_front - ', m_front.shape, ':\n', m_front)
#m_flat = m_front.flatten()
m_flat = m_front.reshape(m_front.shape[0], m_front.shape[1]*m_front.shape[2])
print('m_flat - ', m_flat.shape, ':\n', m_flat)
m_expand = m_flat * np.ones(pred.shape).astype('int')
print('m_expand - ', m_expand.shape, ':\n', m_expand)
m_trans = m_expand.T
m_fixT = m_trans.reshape(pred.shape)
print('m_fixT - ', m_fixT.shape, ':\n', m_fixT)
m = m_fixT
print('m:\n', m.shape)
# Perform the math as described
pred = (pred * m) + a
print('Pred:\n', np.argmax(pred, axis=3))
这个 SSCCE,很好,很糟糕,很复杂。基本上我的目标是创建两个矩阵,“加法”和“乘法”矩阵。乘法矩阵旨在将预测值中的每个像素“归零”,其中真值等于 0 类。这与像素值(即单热编码向量)将其归零以等于
[0, 0, 0, 0, 0, 0]
无关.然后,加法矩阵将向量
[1, 0, 0, 0, 0, 0]
添加到每个归零的位置。最终,这将实现将每个真正的 0 类像素的预测值设置为正确的目标。
batch_size > 1
时没有正确定义。我想没关系,只是为了看看它是否有效,我会分解
tf.unstack
y_true
和
y_pred
张量并对其进行迭代。这导致我对我的损失函数进行了当前的实例化
def weighted_categorical_crossentropy_ignore(weights):
weights = K.variable(weights)
def loss(y_true, y_pred):
y_true_un = tf.unstack(y_true)
y_pred_un = tf.unstack(y_pred)
y_pred_new = []
for i in range(0, y_true.shape[0]):
yt = y_true_un[i]
yp = y_pred_un[i]
# Pred:
# [[[0 3] * [[[1 0] + [[[0 1] = [[[0 0]
# [3 1]]] [[1 1]]] [[0 0]]] [[3 1]]]
# If we multiple pred by a tensor which zeros out only incorrect class 0 labelleling
# Then add class zero to those zero'd out locations
# We can negate the effect of mis-classified class 0 pixels but still punish for
# incorrectly predicted class 0 labels for other classes.
# Create a mask respresenting an all "class 0" image
class_zero_label = K.variable([1.0, 0.0, 0.0, 0.0, 0.0, 0.0])
czl_all = class_zero_label * K.ones(yt.shape)
# Mask both true and pred to locate class 0 pixels
czl_true = czl_all * yt
czl_pred = czl_all * yp
# Subtract to create "addition matrix"
a = czl_true - czl_pred
# Do this.
m = ((a + 1) - (a * 2.))
# And this.
x = K.flatten(m[:, :, 0])
x = x * K.ones(yp.shape)
x = K.transpose(x)
x = K.reshape(x, yp.shape)
# Voila.
ypnew = (yp * x) + a
y_pred_new.append(ypnew)
y_pred_new = tf.concat(y_pred_new, 0)
# Continue calculating weighted categorical crossentropy
# -------------------------------------------------------
# Scale predictions so that the class probs of each sample sum to 1
y_pred_new /= K.sum(y_pred_new, axis=-1, keepdims=True)
# Clip to prevent NaN's and Inf's
y_pred_new = K.clip(y_pred_new, K.epsilon(), 1 - K.epsilon())
loss = y_true * K.log(y_pred_new) * weights
loss = -K.sum(loss, -1)
return loss
return loss
此损失函数的当前问题在于执行操作时
numpy
和
tensorflow
之间的行为存在明显差异
x = K.flatten(m[:, :, 0])
x = x * K.ones(yp.shape)
这意味着代表行为
m_flat = m_front.flatten()
m_expand = m_flat * np.ones(pred.shape).astype('int')
来自 SSCCE。
y_pred[tf.where(y_true == [1, 0, 0, 0, 0, 0])] = [1, 0, 0, 0, 0, 0]
在自定义 tensorflow 损失函数中?
.numpy()
、
y_true
张量上调用
y_pred
以使用
numpy
的 0x1045 设置操作 0x1046t 的 791045 次“7”
tf.compat.v1.enable_eager_execution
到
run_eagerly=True
)。
def weighted_categorical_crossentropy_ignore(weights):
weights = K.variable(weights)
def loss(y_true, y_pred):
yp = y_pred.numpy()
yt = y_true.numpy()
yp[np.nonzero(np.all(yt == [1, 0, 0, 0, 0, 0], axis=3))] = [1, 0, 0, 0, 0, 0]
# Continue calculating weighted categorical crossentropy
# -------------------------------------------------------
# Scale predictions so that the class probs of each sample sum to 1
yp /= K.sum(yp, axis=-1, keepdims=True)
# Clip to prevent NaN's and Inf's
yp = K.clip(yp, K.epsilon(), 1 - K.epsilon())
loss = y_true * K.log(yp) * weights
loss = -K.sum(loss, -1)
return loss
return loss
尽管似乎通过调用
Model().compile(...)
(或此后使用它),我显然已经“破坏”了通过网络的路径/流。基于尝试
y_pred.numpy()
时的错误
ValueError: No gradients provided for any variable: ['conv3d/kernel:0', <....>
我想我不知何故需要将张量“重新编码”回 GPU 内存?我试过了
yp = tf.convert_to_tensor(yp)
无济于事;同样的错误。所以我想同样的问题仍然存在,但出于不同的动机..
.fit
来编码
numpy()
,
y_true
到 1
y_pred
到 9这必然会“破坏”网络路径,因此无法计算梯度。
numpy
我可以
run_eagerly=True
我的
tf.Variable
/
y_true
并执行分配。所以在纯 tensorflow 中我试图再次重新创建相同的代码
def weighted_categorical_crossentropy_ignore(weights):
weights = K.variable(weights)
def loss(y_true, y_pred):
# yp = y_pred.numpy().copy()
# yt = y_true.numpy().copy()
# yp[np.nonzero(np.all(yt == [1, 0, 0, 0, 0, 0], axis=3))] = [1, 0, 0, 0, 0, 0]
yp = K.variable(y_pred)
yt = K.variable(y_true)
#np.all
x = K.all(yt == [1, 0, 0, 0, 0, 0], axis=3)
#np.nonzero
ne = tf.not_equal(x, tf.constant(False))
y = tf.where(ne)
# Perform the desired operation
yp[y] = [1, 0, 0, 0, 0, 0]
# Continue calculating weighted categorical crossentropy
# -------------------------------------------------------
# Scale predictions so that the class probs of each sample sum to 1
#yp /= K.sum(yp, axis=-1, keepdims=True) # Cannot use \= on tf.var, must use var = var /
yp = yp / K.sum(yp, axis=-1, keepdims=True)
# Clip to prevent NaN's and Inf's
yp = K.clip(yp, K.epsilon(), 1 - K.epsilon())
loss = y_true * K.log(yp) * weights
loss = -K.sum(loss, -1)
return loss
return loss
但唉,这显然会产生与调用
y_pred
时相同的问题;无法计算梯度。所以我似乎又回到了广场 1。
def weighted_categorical_crossentropy_ignore(weights):
weights = K.variable(weights)
def loss(y_true, y_pred):
print('y_true.shape: ', y_true.shape)
print('y_pred.shape: ', y_pred.shape)
# Generate modified y_pred where all truly class0 pixels are correct
y_true_class0_indicies = tf.where(tf.math.equal(y_true, [1., 0., 0., 0., 0., 0.]))
y_pred_updates = tf.repeat([
[1.0, 0.0, 0.0, 0.0, 0.0, 0.0]],
repeats=y_true_class0_indicies.shape[0],
axis=0)
yp = tf.tensor_scatter_nd_update(y_pred, y_true_class0_indicies, y_pred_updates)
# Continue calculating weighted categorical crossentropy
# -------------------------------------------------------
# Scale predictions so that the class probs of each sample sum to 1
yp /= K.sum(yp, axis=-1, keepdims=True)
# Clip to prevent NaN's and Inf's
yp = K.clip(yp, K.epsilon(), 1 - K.epsilon())
loss = y_true * K.log(yp) * weights
loss = -K.sum(loss, -1)
return loss
return loss
如果原始答案假定
.numpy()
的形状为
y_true
(即“平面”类表示,而不是单热编码表示
[8, 128, 128]
),我首先打印
[8, 128, 128, 6]
和
y_true
输入的形状
y_true.shape: (8, 128, 128, 6)
y_pred.shape: (8, 128, 128, 6)
为了进一步的理智,由
y_pred
的尾部提供的网络输出形状是
conv2d_18 (Conv2D) (None, 128, 128, 6) 1542 dropout_5[0][0]
__________________________________________________________________________________________________
activation_9 (Activation) (None, 128, 128, 6) 0 conv2d_18[0][0]
==================================================================================================
Total params: 535,551,494
Trainable params: 535,529,478
Non-trainable params: 22,016
__________________________________________________________________________________________________
然后我按照建议的解决方案中的“模式”,用
model.summary
替换原来的
tf.math.equal(y_true, 0)
来处理单热编码的情况。根据我目前对提议的解决方案的理解(经过约 10 分钟的检查),我认为这应该可行。尽管在尝试训练模型时会引发以下异常
InvalidArgumentError: Inner dimensions of output shape must match inner dimensions of updates shape. Output: [8,128,128,6] updates: [684584,6] [Op:TensorScatterUpdate]
因此,似乎(正如我给它们命名的那样)
tf.math.equal(y_true, [1., 0., 0., 0., 0., 0.])
的产生产生了一个具有“太多”元素的“折叠”张量。我理解使用
y_pred_updates
的动机,但它的具体用途似乎不正确。我认为它应该根据我对
tf.repeat
的理解产生形状为
(8, 128, 128, 6)
的张量。我认为这很可能只是基于在调用
tf.tensor_scatter_nd_update
期间对
repeats
和
axis
的选择。
最佳答案
如果我正确理解你的问题,你正在寻找这样的东西:
import tensorflow as tf
# batch of true labels
y_true = tf.constant([5, 0, 1, 3, 4, 0, 2, 0], dtype=tf.int64)
# batch of class probabilities
y_pred = tf.constant(
[
[0.34670502, 0.04551039, 0.14020428, 0.14341979, 0.21430719, 0.10985339],
[0.25681055, 0.14013883, 0.19890164, 0.11124421, 0.14526634, 0.14763844],
[0.09199252, 0.21889475, 0.1170236 , 0.1929019 , 0.20311192, 0.17607528],
[0.3246354 , 0.23257554, 0.15549366, 0.17282239, 0.00000001, 0.11447308],
[0.16502093, 0.13163856, 0.14371352, 0.19880624, 0.23360236, 0.12721846],
[0.27362782, 0.21408406, 0.10917682, 0.13135742, 0.10814326, 0.16361059],
[0.20697299, 0.23721898, 0.06455399, 0.11071447, 0.18990229, 0.19063729],
[0.10320242, 0.22173141, 0.2547973 , 0.2314068 , 0.07063974, 0.11822232]
], dtype=tf.float32)
# find the indices in the batch where the true label is the class 0
indices = tf.where(tf.math.equal(y_true, 0))
# create a tensor with the number of updates you want to replace in `y_pred`
updates = tf.repeat(
[[1.0, 0.0, 0.0, 0.0, 0.0, 0.0]],
repeats=indices.shape[0],
axis=0)
# insert the updates into `y_pred` at the specified indices
modified_y_pred = tf.tensor_scatter_nd_update(y_pred, indices, updates)
print(modified_y_pred)
# tf.Tensor(
# [[0.34670502, 0.04551039, 0.14020428, 0.14341979, 0.21430719, 0.10985339],
# [1.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000],
# [0.09199252, 0.21889475, 0.1170236 , 0.1929019 , 0.20311192, 0.17607528],
# [0.3246354 , 0.23257554, 0.15549366, 0.17282239, 0.00000001, 0.11447308],
# [0.16502093, 0.13163856, 0.14371352, 0.19880624, 0.23360236, 0.12721846],
# [1.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000],
# [0.20697299, 0.23721898, 0.06455399, 0.11071447, 0.18990229, 0.19063729],
# [1.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000]],
# shape=(8, 6), dtype=tf.float32)
这个最终的张量,
modified_y_pred
,可用于微分。
# these arent normalized to 1 but you get the point
probs = tf.random.normal([2, 4, 4, 6])
# raw labels per pixel
labels = tf.random.uniform(
shape=[2, 4, 4],
minval=0,
maxval=6,
dtype=tf.int64)
# your labels are already one-hot encoded
labels = tf.one_hot(labels, 6)
# boolean mask where classes are `0`
# converting back to int labels with argmax for purposes of
# using `tf.math.equal`. Matching on `[1, 0, 0, 0, 0, 0]` is
# potentially buggy; matching on an integer is a lot more
# explicit.
mask = tf.math.equal(tf.math.argmax(labels, -1), 0)[..., None]
# flip the mask to zero out the pixels across channels where
# labels are zero
probs *= tf.cast(tf.math.logical_not(mask), tf.float32)
# multiply the mask by the one-hot labels, and add back
# to the already masked probabilities.
probs += labels * tf.cast(mask, tf.float32)
关于python - Keras 自定义损失函数在语义分割期间忽略特定类的漏报?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/66084314/
C语言sscanf()函数:从字符串中读取指定格式的数据 头文件: ?
最近,我有一个关于工作预评估的问题,即使查询了每个功能的工作原理,我也不知道如何解决。这是一个伪代码。 下面是一个名为foo()的函数,该函数将被传递一个值并返回一个值。如果将以下值传递给foo函数,
CStr 函数 返回表达式,该表达式已被转换为 String 子类型的 Variant。 CStr(expression) expression 参数是任意有效的表达式。 说明 通常,可以
CSng 函数 返回表达式,该表达式已被转换为 Single 子类型的 Variant。 CSng(expression) expression 参数是任意有效的表达式。 说明 通常,可
CreateObject 函数 创建并返回对 Automation 对象的引用。 CreateObject(servername.typename [, location]) 参数 serv
Cos 函数 返回某个角的余弦值。 Cos(number) number 参数可以是任何将某个角表示为弧度的有效数值表达式。 说明 Cos 函数取某个角并返回直角三角形两边的比值。此比值是
CLng 函数 返回表达式,此表达式已被转换为 Long 子类型的 Variant。 CLng(expression) expression 参数是任意有效的表达式。 说明 通常,您可以使
CInt 函数 返回表达式,此表达式已被转换为 Integer 子类型的 Variant。 CInt(expression) expression 参数是任意有效的表达式。 说明 通常,可
Chr 函数 返回与指定的 ANSI 字符代码相对应的字符。 Chr(charcode) charcode 参数是可以标识字符的数字。 说明 从 0 到 31 的数字表示标准的不可打印的
CDbl 函数 返回表达式,此表达式已被转换为 Double 子类型的 Variant。 CDbl(expression) expression 参数是任意有效的表达式。 说明 通常,您可
CDate 函数 返回表达式,此表达式已被转换为 Date 子类型的 Variant。 CDate(date) date 参数是任意有效的日期表达式。 说明 IsDate 函数用于判断 d
CCur 函数 返回表达式,此表达式已被转换为 Currency 子类型的 Variant。 CCur(expression) expression 参数是任意有效的表达式。 说明 通常,
CByte 函数 返回表达式,此表达式已被转换为 Byte 子类型的 Variant。 CByte(expression) expression 参数是任意有效的表达式。 说明 通常,可以
CBool 函数 返回表达式,此表达式已转换为 Boolean 子类型的 Variant。 CBool(expression) expression 是任意有效的表达式。 说明 如果 ex
Atn 函数 返回数值的反正切值。 Atn(number) number 参数可以是任意有效的数值表达式。 说明 Atn 函数计算直角三角形两个边的比值 (number) 并返回对应角的弧
Asc 函数 返回与字符串的第一个字母对应的 ANSI 字符代码。 Asc(string) string 参数是任意有效的字符串表达式。如果 string 参数未包含字符,则将发生运行时错误。
Array 函数 返回包含数组的 Variant。 Array(arglist) arglist 参数是赋给包含在 Variant 中的数组元素的值的列表(用逗号分隔)。如果没有指定此参数,则
Abs 函数 返回数字的绝对值。 Abs(number) number 参数可以是任意有效的数值表达式。如果 number 包含 Null,则返回 Null;如果是未初始化变量,则返回 0。
FormatPercent 函数 返回表达式,此表达式已被格式化为尾随有 % 符号的百分比(乘以 100 )。 FormatPercent(expression[,NumDigitsAfterD
FormatNumber 函数 返回表达式,此表达式已被格式化为数值。 FormatNumber( expression [,NumDigitsAfterDecimal [,Inc
我是一名优秀的程序员,十分优秀!