- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
与其他不安全*操作不同,unsafeInterleaveIO
的the documentation可能存在的陷阱并不十分清楚。那么到底什么时候不安全?我想知道并行/并发和单线程使用的条件。
更具体地说,以下代码中的两个函数在语义上是否等效?如果没有,何时何地?
joinIO :: IO a -> (a -> IO b) -> IO b
joinIO a f = do !x <- a
!x' <- f x
return x'
joinIO':: IO a -> (a -> IO b) -> IO b
joinIO' a f = do !x <- unsafeInterleaveIO a
!x' <- unsafeInterleaveIO $ f x
return x'
data LIO a = LIO {runLIO :: IO a}
instance Functor LIO where
fmap f (LIO a) = LIO (fmap f a)
instance Monad LIO where
return x = LIO $ return x
a >>= f = LIO $ lazily a >>= lazily . f
where
lazily = unsafeInterleaveIO . runLIO
iterateLIO :: (a -> LIO a) -> a -> LIO [a]
iterateLIO f x = do
x' <- f x
xs <- iterateLIO f x' -- IO monad would diverge here
return $ x:xs
limitLIO :: (a -> LIO a) -> a -> (a -> a -> Bool) -> LIO a
limitLIO f a converged = do
xs <- iterateLIO f a
return . snd . head . filter (uncurry converged) $ zip xs (tail xs)
root2 = runLIO $ limitLIO newtonLIO 1 converged
where
newtonLIO x = do () <- LIO $ print x
LIO $ print "lazy io"
return $ x - f x / f' x
f x = x^2 -2
f' x = 2 * x
converged x x' = abs (x-x') < 1E-15
unsafe*
令人恐惧,我宁愿避免在严重的应用程序中使用此代码,但我至少比确定更严格的IO monad可能更懒惰,以决定“融合”的含义,从而导致(我认为是)更多惯用的Haskell。这又引出了另一个问题:为什么Haskell的(或GHC的)IO monad不是默认的语义?我听说过一些关于延迟IO的资源管理问题(GHC仅通过少量固定的命令集提供了这些问题),但是通常给出的示例有点像损坏的makefile:资源X取决于资源Y,但是如果失败,要指定依赖关系,您将获得X的 undefined 状态。惰性IO真的是造成此问题的元凶吗? (另一方面,如果上面的代码中有一个细微的并发错误,例如死锁,我将其视为一个更基本的问题。)
unsafeInterleaveIO
是不安全的,因为即使暴露于GHC Haskell的(通常)隐藏的杂质,它甚至可以在单线程程序中引入任何类型的并发错误。 (iteratee
似乎是一个不错的解决方案,我当然会学习如何使用它。)unsafe
函数。整个Haskell(由GHC实施)可能是不安全的,并且(GHC)Haskell中的“纯”功能仅是按惯例和人民的善意。类型永远不能证明纯度。 unsafe*
函数等而具有参照透明性。
-- An evil example of a function whose result depends on a particular
-- evaluation order without reference to unsafe* functions or even
-- the IO monad.
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE BangPatterns #-}
import GHC.Prim
f :: Int -> Int
f x = let v = myVar 1
-- removing the strictness in the following changes the result
!x' = h v x
in g v x'
g :: MutVar# RealWorld Int -> Int -> Int
g v x = let !y = addMyVar v 1
in x * y
h :: MutVar# RealWorld Int -> Int -> Int
h v x = let !y = readMyVar v
in x + y
myVar :: Int -> MutVar# (RealWorld) Int
myVar x =
case newMutVar# x realWorld# of
(# _ , v #) -> v
readMyVar :: MutVar# (RealWorld) Int -> Int
readMyVar v =
case readMutVar# v realWorld# of
(# _ , x #) -> x
addMyVar :: MutVar# (RealWorld) Int -> Int -> Int
addMyVar v x =
case readMutVar# v realWorld# of
(# s , y #) ->
case writeMutVar# v (x+y) s of
s' -> x + y
main = print $ f 1
-- Firstly, according to "libraries/base/GHC/IO.hs",
{-
The IO Monad is just an instance of the ST monad, where the state is
the real world. We use the exception mechanism (in GHC.Exception) to
implement IO exceptions.
...
-}
-- And indeed in "libraries/ghc-prim/GHC/Types.hs", We have
newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))
-- And in "libraries/base/GHC/Base.lhs", we have the Monad instance for IO:
data RealWorld
instance Functor IO where
fmap f x = x >>= (return . f)
instance Monad IO where
m >> k = m >>= \ _ -> k
return = returnIO
(>>=) = bindIO
fail s = failIO s
returnIO :: a -> IO a
returnIO x = IO $ \ s -> (# s, x #)
bindIO :: IO a -> (a -> IO b) -> IO b
bindIO (IO m) k = IO $ \ s -> case m s of (# new_s, a #) -> unIO (k a) new_s
unIO :: IO a -> (State# RealWorld -> (# State# RealWorld, a #))
unIO (IO a) = a
-- Many of the unsafe* functions are defined in "libraries/base/GHC/IO.hs":
unsafePerformIO :: IO a -> a
unsafePerformIO m = unsafeDupablePerformIO (noDuplicate >> m)
unsafeDupablePerformIO :: IO a -> a
unsafeDupablePerformIO (IO m) = lazy (case m realWorld# of (# _, r #) -> r)
unsafeInterleaveIO :: IO a -> IO a
unsafeInterleaveIO m = unsafeDupableInterleaveIO (noDuplicate >> m)
unsafeDupableInterleaveIO :: IO a -> IO a
unsafeDupableInterleaveIO (IO m)
= IO ( \ s -> let
r = case m s of (# _, res #) -> res
in
(# s, r #))
noDuplicate :: IO ()
noDuplicate = IO $ \s -> case noDuplicate# s of s' -> (# s', () #)
-- The auto-generated file "libraries/ghc-prim/dist-install/build/autogen/GHC/Prim.hs"
-- list types of all the primitive impure functions. For example,
data MutVar# s a
data State# s
newMutVar# :: a -> State# s -> (# State# s,MutVar# s a #)
-- The actual implementations are found in "rts/PrimOps.cmm".
unsafeDupableInterleaveIO m >>= f
==> (let u = unsafeDupableInterleaveIO)
u m >>= f
==> (definition of (>>=) and ignore the constructor)
\s -> case u m s of
(# s',a' #) -> f a' s'
==> (definition of u and let snd# x = case x of (# _,r #) -> r)
\s -> case (let r = snd# (m s)
in (# s,r #)
) of
(# s',a' #) -> f a' s'
==>
\s -> let r = snd# (m s)
in
case (# s, r #) of
(# s', a' #) -> f a' s'
==>
\s -> f (snd# (m s)) s
s
带有一些实际含义(它没有),则它看起来更像是并发IO(或函数正确表示的交错IO),而不是我们通常用“惰性状态monad”表示的惰性IO。懒惰状态通过关联操作正确地进行了线程化。
RealWorld
。但是,这似乎是不可能的,因为
State# s
和
RealWorld
都没有构造函数。即使有可能,我也不得不代表我们真实世界的精确,功能性代表,这也是不可能的。
最佳答案
在顶部,您拥有的两个功能始终相同。
v1 = do !a <- x
y
v2 = do !a <- unsafeInterleaveIO x
y
unsafeInterleaveIO
将
IO
操作推迟到强制其结果执行之前-但您正在通过使用严格的模式匹配
!a
来立即强制执行它,因此该操作完全不会延迟。因此
v1
和
v2
完全相同。
unsafeInterleaveIO
的使用是安全的。如果调用
unsafeInterleaveIO x
,那么您必须证明可以随时调用
x
并仍然产生相同的输出。
IO
monad中完成IO,但是您希望能够执行增量IO,并且不想重写所有纯函数来调用IO回调以获取更多数据。增量IO很重要,因为它使用的内存更少,从而可以在不过多更改算法的情况下对不适合内存的数据集进行操作。
IO
monad之外进行IO。这通常不安全。
unsafeInterleaveIO
实际上只是具有不同类型的
unsafePerformIO
。
rot13 :: Char -> Char
rot13 x
| (x >= 'a' && x <= 'm') || (x >= 'A' && x <= 'M') = toEnum (fromEnum x + 13)
| (x >= 'n' && x <= 'z') || (x >= 'N' && x <= 'Z') = toEnum (fromEnum x - 13)
| otherwise = x
rot13file :: FilePath -> IO ()
rot13file path = do
x <- readFile path
let y = map rot13 x
writeFile path y
main = rot13file "test.txt"
Int->Int->Int
类型的函数给出不同的整数,具体取决于
关于haskell - 什么时候unsafeInterleaveIO不安全?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/13263692/
在 Haskell 中,类型声明使用双冒号,即 (::),如 not::Bool -> Bool。 但是在许多语法与 Haskell 类似的语言中,例如榆树、 Agda 、他们使用单个冒号(:)来声明
insertST :: StateDecoder -> SomeState -> Update SomeState SomeThing insertST stDecoder st = ... Stat
如果这个问题有点含糊,请提前道歉。这是一些周末白日梦的结果。 借助 Haskell 出色的类型系统,将数学(尤其是代数)结构表达为类型类是非常令人愉快的。我的意思是,看看 numeric-prelud
我有需要每 5 分钟执行一次的小程序。 目前,我有执行该任务的 shell 脚本,但我想通过 CLI 中的键为用户提供无需其他脚本即可运行它的能力。 实现这一目标的最佳方法是什么? 最佳答案 我想你会
RWH 面世已经有一段时间了(将近 3 年)。在在线跟踪这本书的渐进式写作之后,我渴望获得我的副本(我认为这是写书的最佳方式之一。)在所有相当学术性的论文中,作为一个 haskell 学生,读起来多么
一个经典的编程练习是用 Lisp/Scheme 编写一个 Lisp/Scheme 解释器。可以利用完整语言的力量来为该语言的子集生成解释器。 Haskell 有类似的练习吗?我想使用 Haskell
以下摘自' Learn You a Haskell ' 表示 f 在函数中用作“值的类型”。 这是什么意思?即“值的类型”是什么意思? Int 是“值的类型”,对吗?但是 Maybe 不是“值的类型”
现在我正在尝试创建一个基本函数,用于删除句子中的所有空格或逗号。 stringToIntList :: [Char] -> [Char] stringToIntList inpt = [ a | a
我是 Haskell 的新手,对模式匹配有疑问。这是代码的高度简化版本: data Value = MyBool Bool | MyInt Integer codeDuplicate1 :: Valu
如何解释这个表达式? :t (+) (+3) (*100) 自 和 具有相同的优先级并且是左结合的。我认为这与 ((+) (+3)) (*100) 相同.但是,我不知道它的作用。在 Learn
这怎么行 > (* 30) 4 120 但这不是 > * 30 40 error: parse error on input ‘*’ 最佳答案 (* 30) 是一个 section,它仍然将 * 视为
我想创建一个函数,删除满足第二个参数中给定谓词的第一个元素。像这样: removeFirst "abab" ( 'b') = "abab" removeFirst [1,2,3,4] even =
Context : def fib(n): if n aand returns a memoized version of the same function. The trick is t
我明白惰性求值是什么,它是如何工作的以及它有什么优势,但是你能解释一下 Haskell 中什么是严格求值吗?我似乎找不到太多关于它的信息,因为惰性评估是最著名的。 他们各自的优势是什么。什么时候真正使
digits :: Int -> [Int] digits n = reverse (x) where x | n digits 1234 = [3,1,2,4]
我在 F# 中有以下代码(来自一本书) open System.Collections.Generic type Table = abstract Item : 'T -> 'U with ge
我对 Haskell 比较陌生,过去几周一直在尝试学习它,但一直停留在过滤器和谓词上,我希望能得到帮助以帮助理解。 我遇到了一个问题,我有一个元组列表。每个元组包含一个 (songName, song
我是 haskell 的初学者,我试图为埃拉托色尼筛法定义一个简单的函数,但它说错误: • Couldn't match expected type ‘Bool -> Bool’
我是 Haskell 语言的新手,我在使用 read 函数时遇到了一些问题。准确地说,我的理解是: read "8.2" + 3.8 应该返回 12.0,因为我们希望返回与第二个成员相同的类型。我真正
当我尝试使用真实项目来驱动它来学习 Haskell 时,我遇到了以下定义。我不明白每个参数前面的感叹号是什么意思,我的书上好像也没有提到。 data MidiMessage = MidiMessage
我是一名优秀的程序员,十分优秀!