gpt4 book ai didi

python - 如何运行x线程数量并等待线程完成

转载 作者:行者123 更新时间:2023-12-03 13:18:39 24 4
gpt4 key购买 nike

我一直在尝试越来越多地使用Python线程,并且在排队时陷入困境。

我的想法是要读取一个CSV文件(例如说一行1000行的csv行)。我想做的是读取CSV中每一行的信息,但我希望它以线程方式进行。通过这种方式,我想同时运行多个x线程,这意味着如果我想同时运行5个线程。应该只能运行5个线程。

一旦5个线程之一完成,就应该立即从csv运行新行(如果没有更多要读取的内容,请停止运行)。

到目前为止,我所做的是:

import sys
import csv
import threading
import queue


totalThreadAtTime = 5

def threadingTest(row):
print(row.get('Sales Start Date'))


def main():
with open('test.csv') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:

threading.Thread(
target=threadingTest,
args=(row,)
).start()


if __name__ == '__main__':
main()

现在,它只是在csv中的每一行开始以具有每个线程,而我想“限制”它以使同时只有5个线程运行。一旦完成,然后开始新的。

我怎样才能做到这一点?

而且,如果有什么我想念的。请告诉我! :)

编辑:

CSV:
Home Furnishing Business No.,Product Range Area No.,Product Area No.,No.,Description,Unit Price Including VAT,045 Sellable Stock,022 Sellable Stock,Sales Method,Range Code,Sales Start Date,End Date Sales,Range Status,Replenishment Code
07,071,0711,10290396,ME rnfrcd vent top rl 60 galvanised AP CN,8.00,"1,000.",949.,F,K,6/1/2015,,Released,10
07,073,0731,379172,FO N drwr low 80x60 white AP,38.00,"1,000.",963.,F,K,2/1/2019,,Released,10
07,073,0731,80379173,FO N drwr med 40x60 white AP,30.00,"1,000.",964.,F,K,2/1/2019,,Released,10
07,073,0731,40379170,FO N drwr low 40x60 white AP,26.00,"1,000.",966.,F,K,2/1/2019,,Released,10
07,073,0731,20379171,FO N drwr low 60x60 white AP,32.00,"1,000.",967.,F,K,2/1/2019,,Released,10
07,073,0731,60379174,FO N drwr med 60x60 white AP,36.00,"1,000.",967.,F,K,2/1/2019,,Released,10
10,101,1015,70420173,SUNNEBY cord set 1.8 m dark yellow textile,9.90,"1,665.",983.,M,K,8/1/2019,,Released,10
02,021,0211,10444351,GLASSVIK gls dr 60x64 drk rbr/clear glass AP,25.00,663.,996.,S,K,4/1/2020,,Released,10
02,021,0211,50444387,SELSVIKEN door/drawer front 60x38 hi-gl drk rbr AP,10.00,666.,999.,S,K,4/1/2020,,Released,10
09,093,0935,90311229,KURA NN bed tent pink AP,30.00,666.,999.,S,K,8/1/2015,,Released,10
12,121,1211,80459221,GUNRID air purify crtn 1 pair 145x250 lgrey AP,49.90,666.,999.,M,K,4/1/2020,,Released,10
16,163,1633,451832,VANLIGEN vase 18 grey AP,14.90,666.,999.,M,K,4/1/2020,,Released,10
18,181,1813,70261230,BRADA laptop support 42x31 pink AP CN,9.90,666.,999.,M,K,10/1/2013,,Released,10
07,075,0752,10247181,HALLVIKEN in sin 1 bwl 56x50 blk quartz comp AP CN,350.00,"1,000.",999.,F,K,2/1/2014,,Released,10
10,102,1023,10390701,FOTO NN pend lmp 38 aluminium,29.90,"1,666.",999.,M,K,4/1/2018,,Released,10
10,104,1042,50426166,LILLHULT USB type C t USB crd 1.5 m AP,7.90,"1,666.",999.,M,K,10/1/2018,,Released,10
06,061,0611,20392276,GO high cabinet 40x32x192 Kasjon light grey AP,295.00,"1,000.","1,000.",F,K,2/1/2018,,Released,10
06,062,0621,60381285,TISKEN soap dish w suction cup white AP,6.90,"1,000.","1,000.",M,K,2/1/2019,,Released,10
11,113,1131,20432574,OTTSJON hand towel 40x70 white/blue AP,5.90,"1,665.","1,000.",M,K,4/1/2019,,Released,10
11,111,1112,10412595,VARBRACKA qc/2pwc 150x200/50x80 beige/white AP,29.90,"1,666.","1,000.",M,K,10/1/2018,,Released,10
11,111,1112,60412606,VARBRACKA qc/4pwc 200x200/50x80 beige/white AP,39.90,"1,666.","1,000.",M,K,10/1/2018,,Released,10
06,061,0611,30387646,GO wash-stnd w 2 drws 80x47x58 Kasjon lgrey AP,325.00,"2,000.","1,000.",F,K,2/1/2018,,Released,10
02,021,0211,30363990,SINDVIK gls dr 60x38 light grey/clear glass AP,25.00,"1,666.","1,001.",S,K,4/1/2017,,Released,10
11,111,1112,40412607,VARBRACKA qc/4pwc 240x220/50x80 beige/white AP,49.90,"1,666.","1,002.",M,K,10/1/2018,,Released,10
12,121,1211,343404,SPARVORT sheer crtn 1 pair 145x250 white AP,39.90,"1,666.","1,002.",M,K,2/1/2017,,Released,10

def main():

pool = ThreadPool(processes=5) # argument name is inherited from process pool, a bit confusing

def process_row(row):
print(row)
# pass # do something

# file handler can be directly iterated instead
# then, you'll get a line instead of a parsed CSV row
reader = csv.reader(open('test.csv'))

# pool.map is faster but doesn't guarantee order of results
pool.imap(process_row, reader)

if __name__ == '__main__':
main()

最佳答案

multiprocessing中包含一个ThreadPool的现有实现。
这是一个如何使用它的示例:

import csv
from multiprocessing.pool import ThreadPool

# argument name is inherited from process pool, and is a bit confusing
# will use <number of CPUs> if omitted
pool = ThreadPool(processes=max_threads)

def process_row(row):
pass # do something

# file handler can be directly iterated instead
# then, you'll get a line instead of a parsed CSV row
reader = csv.reader(open(filename))

# pool.map is faster but doesn't guarantee order of results
pool.imap(process_row, reader)

UPD: pool.imap是一个迭代器。它会在控制台中自动评估,但在独立脚本中必须显式评估。使固定:
result = list(pool.imap(process_row, reader))

关于python - 如何运行x线程数量并等待线程完成,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60712235/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com