- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在研究大型数据集上的粗麻布矩阵。我正在尝试在多个CPU上并行执行这些计算。我的设置当前有1个节点和10个CPU。我正在使用Python 2.7
我为代码编写了一个小抽象,以更好地理解分布式 tensorflow 。下面是错误
2017-07-23 16:16:17.281414: I tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:316] Started server with target: grpc://localhost:2225
Process Process-3:
Traceback (most recent call last):
File "/home/skay/anaconda2/lib/python2.7/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/home/skay/anaconda2/lib/python2.7/multiprocessing/process.py", line 114, in run
self._target(*self._args, **self._kwargs)
File "/home/skay/.PyCharmCE2017.1/config/scratches/scratch_6.py", line 32, in cifar10
serv = tf.train.Server(cluster, job_name= params.job_name,task_index=params.task_index)
File "/home/skay/anaconda2/lib/python2.7/site-packages/tensorflow/python/training/server_lib.py", line 145, in __init__
self._server_def.SerializeToString(), status)
File "/home/skay/anaconda2/lib/python2.7/contextlib.py", line 24, in __exit__
self.gen.next()
File "/home/skay/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/errors_impl.py", line 466, in raise_exception_on_not_ok_status
pywrap_tensorflow.TF_GetCode(status)) UnknownError: Could not start gRPC server
> `2017-07-23 16:27:48.605617: I tensorflow/core/distributed_runtime/master_session.cc:999] Start master session fe9fd6a338e2c9a7 with config:
2017-07-23 16:27:48.607126: I tensorflow/core/distributed_runtime/master_session.cc:999] Start master session 3560417f98b00dea with config:
[ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
Process-3
[ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
Process-3
[ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
Process-3
ERROR:tensorflow:==================================
Object was never used (type <class 'tensorflow.python.framework.ops.Operation'>):
<tf.Operation 'worker_0/init' type=NoOp>
If you want to mark it as used call its "mark_used()" method.
It was originally created here:
['File "/home/skay/.PyCharmCE2017.1/config/scratches/scratch_6.py", line 83, in <module>\n proc.start()', 'File "/home/skay/anaconda2/lib/python2.7/multiprocessing/process.py", line 130, in start\n self._popen = Popen(self)', 'File "/home/skay/anaconda2/lib/python2.7/multiprocessing/forking.py", line 126, in __init__\n code = process_obj._bootstrap()', 'File "/home/skay/anaconda2/lib/python2.7/multiprocessing/process.py", line 258, in _bootstrap\n self.run()', 'File "/home/skay/anaconda2/lib/python2.7/multiprocessing/process.py", line 114, in run\n self._target(*self._args, **self._kwargs)', 'File "/home/skay/.PyCharmCE2017.1/config/scratches/scratch_6.py", line 49, in cifar10\n init_op=tf.initialize_all_variables(),logdir=\'/tmp/mydir\')', 'File "/home/skay/anaconda2/lib/python2.7/site-packages/tensorflow/python/util/tf_should_use.py", line 170, in wrapped\n return _add_should_use_warning(fn(*args, **kwargs))', 'File "/home/skay/anaconda2/lib/python2.7/site-packages/tensorflow/python/util/tf_should_use.py", line 139, in _add_should_use_warning\n wrapped = TFShouldUseWarningWrapper(x)', 'File "/home/skay/anaconda2/lib/python2.7/site-packages/tensorflow/python/util/tf_should_use.py", line 96, in __init__\n stack = [s.strip() for s in traceback.format_stack()]']
==================================
2017-07-23 16:28:28.646871: I tensorflow/core/distributed_runtime/master.cc:209] CreateSession still waiting for response from worker: /job:worker/replica:0/task:0
2017-07-23 16:28:38.647276: I tensorflow/core/distributed_runtime/master.cc:209] CreateSession still waiting for response from worker: /job:worker/replica:0/task:0
2017-07-23 16:28:48.647526: I tensorflow/core/distributed_runtime/master.cc:209] CreateSession still waiting for response from worker: /job:worker/replica:
[{'worker': 0}, {'worker': 0}]
# build a python mutliprocess.py
import multiprocessing
import time
import tensorflow as tf
from tensorflow.contrib.training import HParams
import os
import psutil
import numpy as np
from tensorflow.python.client import device_lib
from resnet import *
import Queue
cluster_spec ={"ps": ["localhost:2226"
],
"worker": [
"localhost:2227",
"localhost:2228"]}
cluster = tf.train.ClusterSpec(cluster_spec)
im_Test = np.linspace(1,10,10)
def model_fun(input):
print multiprocessing.current_process().name
return input
def cifar10(device,return_dict,result_t):
params = HParams(cluster=cluster,
job_name = device[0],
task_index = device[1])
serv = tf.train.Server(cluster, job_name= params.job_name,task_index=params.task_index)
input_img=[]
true_lab=[]
if params.job_name == "ps":
##try and wait for all the wokers t
serv.join()
elif params.job_name == "worker":
with tf.device(tf.train.replica_device_setter(worker_device="/job:worker/replica:0/task:%d" % params.task_index,
cluster=cluster)):
# with tf.Graph().as_default(), tf.device('/cpu:%d' % params.task_index):
# with tf.container('%s %d' % ('batchname', params.task_index)) as scope:
input_img = tf.placeholder(dtype=tf.float32, shape=[10,])
with tf.name_scope('%s_%d' % (params.job_name, params.task_index)) as scope:
hess_op = model_fun(input_img)
global_step = tf.contrib.framework.get_or_create_global_step()
sv = tf.train.Supervisor(is_chief=(params.task_index == 0),
global_step=global_step,
init_op=tf.initialize_all_variables(),logdir='/tmp/mydir')
with sv.prepare_or_wait_for_session(serv.target) as sess:
step = 0
while not sv.should_stop() :
hess = sess.run(hess_op, feed_dict={input_img:im_Test })
print(np.array(hess))
print multiprocessing.current_process().name
step += 1
if(step==3):
return_dict[params.job_name] = params.task_index
result_t.put(return_dict)
break
sv.stop()
sess.close()
return
if __name__ == '__main__':
logger = multiprocessing.log_to_stderr()
manager = multiprocessing.Manager()
result = manager.Queue()
return_dict = manager.dict()
processes = []
devices = [['ps', 0],
['worker', 0],
['worker', 1]
]
for i in (devices):
start_time = time.time()
proc = multiprocessing.Process(target=cifar10,args=(i,return_dict,result))
processes.append(proc)
proc.start()
for p in processes:
p.join()
# print return_dict.values()
kill = []
while True:
if result.empty() == True:
break
kill.append(result.get())
print kill
print("time taken = %d" % (start_time - time.time()))
最佳答案
在我的情况下,我发现ps会引发此错误,并且在提交tensorflowonspark工作 yarn 簇模式时,woker等待响应。ps
错误如下
2018-01-17 11:08:46,366 INFO (MainThread-7305) Starting TensorFlow ps:0 on cluster node 0 on background process 2018-01-17 11:08:56,085 INFO (MainThread-7395) 0: ======== ps:0 ======== 2018-01-17 11:08:56,086 INFO (MainThread-7395) 0: Cluster spec: {'ps': ['172.16.5.30:33088'], 'worker': ['172.16.5.22:41428', '172.16.5.30:33595']} 2018-01-17 11:08:56,086 INFO (MainThread-7395) 0: Using CPU 2018-01-17 11:08:56.087452: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA E0117 11:08:56.088501182 7395 ev_epoll1_linux.c:1051] grpc epoll fd: 10 E0117 11:08:56.088860707 7395 server_chttp2.c:38] {"created":"@1516158536.088783549","description":"No address added out of total 1 resolved","file":"external/grpc/src/core/ext/transport/chttp2/server/chttp2_server.c","file_line":245,"referenced_errors":[{"created":"@1516158536.088779164","description":"Failed to add any wildcard listeners","file":"external/grpc/src/core/lib/iomgr/tcp_server_posix.c","file_line":338,"referenced_errors":[{"created":"@1516158536.088771177","description":"Unable to configure socket","fd":12,"file":"external/grpc/src/core/lib/iomgr/tcp_server_utils_posix_common.c","file_line":200,"referenced_errors":[{"created":"@1516158536.088767669","description":"OS Error","errno":98,"file":"external/grpc/src/core/lib/iomgr/tcp_server_utils_posix_common.c","file_line":173,"os_error":"Address already in use","syscall":"bind"}]},{"created":"@1516158536.088778651","description":"Unable to configure socket","fd":12,"file":"external/grpc/src/core/lib/iomgr/tcp_server_utils_posix_common.c","file_line":200,"referenced_errors":[{"created":"@1516158536.088776541","description":"OS Error","errno":98,"file":"external/grpc/src/core/lib/iomgr/tcp_server_utils_posix_common.c","file_line":173,"os_error":"Address already in use","syscall":"bind"}]}]}]} Process Process-2: Traceback (most recent call last): File "/data/yarn/nm/usercache/hdfs/appcache/application_1515984940590_0270/container_e13_1515984940590_0270_01_000002/Python/lib/python2.7/multiprocessing/process.py", line 258, in _bootstrap self.run() File "/data/yarn/nm/usercache/hdfs/appcache/application_1515984940590_0270/container_e13_1515984940590_0270_01_000002/Python/lib/python2.7/multiprocessing/process.py", line 114, in run self._target(*self._args, **self._kwargs) File "/data/yarn/nm/usercache/hdfs/appcache/application_1515984940590_0270/container_e13_1515984940590_0270_01_000001/tfspark.zip/tensorflowonspark/TFSparkNode.py", line 269, in wrapper_fn File "/data/yarn/nm/usercache/hdfs/appcache/application_1515984940590_0270/container_e13_1515984940590_0270_01_000002/pyfiles/mnist_dist.py", line 38, in map_fun cluster, server = ctx.start_cluster_server(1, args.rdma) File "/data/yarn/nm/usercache/hdfs/appcache/application_1515984940590_0270/container_e13_1515984940590_0270_01_000002/tfspark.zip/tensorflowonspark/TFSparkNode.py", line 56, in start_cluster_server return TFNode.start_cluster_server(self, num_gpus, rdma) File "/data/yarn/nm/usercache/hdfs/appcache/application_1515984940590_0270/container_e13_1515984940590_0270_01_000002/tfspark.zip/tensorflowonspark/TFNode.py", line 110, in start_cluster_server server = tf.train.Server(cluster, ctx.job_name, ctx.task_index) File "/data/yarn/nm/usercache/hdfs/appcache/application_1515984940590_0270/container_e13_1515984940590_0270_01_000002/Python/lib/python2.7/site-packages/tensorflow/python/training/server_lib.py", line 145, in init self._server_def.SerializeToString(), status) File "/data/yarn/nm/usercache/hdfs/appcache/application_1515984940590_0270/container_e13_1515984940590_0270_01_000002/Python/lib/python2.7/site-packages/tensorflow/python/framework/errors_impl.py", line 473, in exit c_api.TF_GetCode(self.status.status)) UnknownError: Could not start gRPC server
woker:1 log
2018-01-17 11:09:14.614244: I tensorflow/core/distributed_runtime/master.cc:221] CreateSession still waiting for response from worker: /job:ps/replica:0/task:0
关于python - Tensorflow多处理; UnknownError : Could not start gRPC server,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45269790/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!