gpt4 book ai didi

multithreading - OpenMP:增加线程数时的明显竞争状态

转载 作者:行者123 更新时间:2023-12-03 13:02:09 25 4
gpt4 key购买 nike

我有这段代码(只是删除了很长且在并行区域之外的变量的初始化)。我正在本地计算机(4个物理核心,8个线程)上对其进行测试,并将速度和结果与其串行版本进行比较。当我使用4个以上的线程运行代码时,有时似乎会在某些竞争条件下发生,并且两种情况下的最终输出(在并行区域之后写入磁盘的变量T)是不同的。当我使用4个或更少的线程运行时,一切都很好,两个代码都以相同的迭代次数运行,并给出最终结果。
根据文档,每个OMP DO块的末尾都有一个隐式同步(除非您指定nowait)。

program test

integer :: nx=500,ny=500
integer :: i,j,iteration

double precision, allocatable, dimension(:,:) :: T, T_old
double precision :: dx,dy,dt
double precision :: error,change,delta,errtol

allocate(T(0:nx+1,0:ny+1))
allocate(T_old(0:nx+1,0:ny+1))

! initialisation of T, T_old, dt, dx, dy and errtol

error=1.0d0
iteration=0

!$OMP PARALLEL SHARED(error,iteration,change) private(i,j,delta)

do while (error.gt.errtol.and.error.lt.10.0d0)
change=0.0d0
!$OMP DO schedule(static) reduction(max:change)
do j=1,ny
do i=1,nx
delta=dt*( (T_old(i+1,j)-2.0d0*T_old(i,j)+T_old(i-1,j))/dx**2 + &
(T_old(i,j+1)-2.0d0*T_old(i,j)+T_old(i,j-1))/dy**2 )
T(i,j)=T_old(i,j)+delta
change=max(delta,change)
enddo
enddo
!$OMP END DO
! implicit barrier (implies FLUSH) at end of parallel do region (unless you specify nowait clause)


!$OMP SINGLE
error=change
! just one thread updates iteration
iteration=iteration+1
! write(*,*) iteration, error
!$OMP END SINGLE

!$OMP DO schedule(static)
! update T_old
do j=1,ny
do i=1,nx
T_old(i,j)=T(i,j)
enddo
enddo
!$OMP END DO
enddo
!$OMP END PARALLEL

! write T to disk

deallocate(T,T_old)

end program test
编辑:正确的代码,请参阅@Gilles注释:
program test

integer :: nx=500,ny=500
integer :: i,j,iteration

double precision, allocatable, dimension(:,:) :: T, T_old
double precision :: dx,dy,dt
double precision :: error,change,delta,errtol

allocate(T(0:nx+1,0:ny+1))
allocate(T_old(0:nx+1,0:ny+1))

! initialisation of T, T_old, dt, dx, dy and errtol

error=1.0d0
iteration=0
change=0.0d0

!$OMP PARALLEL SHARED(error,iteration,change) private(i,j,delta)

do while (error.gt.errtol.and.error.lt.10.0d0)
!$OMP DO schedule(static) reduction(max:change)
do j=1,ny
do i=1,nx
delta=dt*( (T_old(i+1,j)-2.0d0*T_old(i,j)+T_old(i-1,j))/dx**2 + &
(T_old(i,j+1)-2.0d0*T_old(i,j)+T_old(i,j-1))/dy**2 )
T(i,j)=T_old(i,j)+delta
change=max(delta,change)
enddo
enddo
!$OMP END DO
! implicit barrier (implies FLUSH) at end of parallel do region (unless you specify nowait clause)


!$OMP SINGLE
error=change
change=0.0d0
! just one thread updates iteration
iteration=iteration+1
! write(*,*) iteration, error
!$OMP END SINGLE

!$OMP DO schedule(static)
! update T_old
do j=1,ny
do i=1,nx
T_old(i,j)=T(i,j)
enddo
enddo
!$OMP END DO
enddo
!$OMP END PARALLEL

! write T to disk

deallocate(T,T_old)

end program test

最佳答案

在DO WHILE循环中,重新初始化变量change时的竞争条件已删除。通过在并行区域之外初始化change并使用!$OMP SINGLE指令保护其在并行区域中的更新来解决。

program test

integer :: nx=500,ny=500
integer :: i,j,iteration

double precision, allocatable, dimension(:,:) :: T, T_old
double precision :: dx,dy,dt
double precision :: error,change,delta,errtol

allocate(T(0:nx+1,0:ny+1))
allocate(T_old(0:nx+1,0:ny+1))

! initialisation of T, T_old, dt, dx, dy and errtol

error=1.0d0
iteration=0
change=0.0d0

!$OMP PARALLEL SHARED(error,iteration,change) private(i,j,delta)

do while (error.gt.errtol.and.error.lt.10.0d0)
!$OMP DO schedule(static) reduction(max:change)
do j=1,ny
do i=1,nx
delta=dt*( (T_old(i+1,j)-2.0d0*T_old(i,j)+T_old(i-1,j))/dx**2 + &
(T_old(i,j+1)-2.0d0*T_old(i,j)+T_old(i,j-1))/dy**2 )
T(i,j)=T_old(i,j)+delta
change=max(delta,change)
enddo
enddo
!$OMP END DO
! implicit barrier (implies FLUSH) at end of parallel do region (unless you specify nowait clause)


!$OMP SINGLE
error=change
change=0.0d0
! just one thread updates iteration
iteration=iteration+1
! write(*,*) iteration, error
!$OMP END SINGLE

!$OMP DO schedule(static)
! update T_old
do j=1,ny
do i=1,nx
T_old(i,j)=T(i,j)
enddo
enddo
!$OMP END DO
enddo
!$OMP END PARALLEL

! write T to disk

deallocate(T,T_old)

end program test

关于multithreading - OpenMP:增加线程数时的明显竞争状态,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63682555/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com