- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个来自 oracle 表的数据框,我试图在本地使用 Snappy 压缩将其写入 Parquet 格式。
如果我另存为 CSV,则工作正常,但在尝试另存为 Parquet 时遇到此错误。
java.lang.UnsatisfiedLinkError: org.xerial.snappy.SnappyNative.maxCompressedLength(I)I
2017-05-19 08:10:37.398 INFO 7740 --- [rker for task 0] org.apache.hadoop.io.compress.CodecPool : Got brand-new compressor [.snappy]
2017-05-19 08:11:45.482 ERROR 7740 --- [rker for task 0] org.apache.spark.util.Utils : Aborting task
java.lang.UnsatisfiedLinkError: org.xerial.snappy.SnappyNative.maxCompressedLength(I)I
at org.xerial.snappy.SnappyNative.maxCompressedLength(Native Method) ~[snappy-java-1.1.2.6.jar:na]
at org.xerial.snappy.Snappy.maxCompressedLength(Snappy.java:376) ~[snappy-java-1.1.2.6.jar:na]
at org.apache.parquet.hadoop.codec.SnappyCompressor.compress(SnappyCompressor.java:67) ~[parquet-hadoop-1.8.1.jar:1.8.1]
at org.apache.hadoop.io.compress.CompressorStream.compress(CompressorStream.java:81) ~[hadoop-common-2.2.0.jar:na]
at org.apache.hadoop.io.compress.CompressorStream.finish(CompressorStream.java:92) ~[hadoop-common-2.2.0.jar:na]
at org.apache.parquet.hadoop.CodecFactory$BytesCompressor.compress(CodecFactory.java:112) ~[parquet-hadoop-1.8.1.jar:1.8.1]
at org.apache.parquet.hadoop.ColumnChunkPageWriteStore$ColumnChunkPageWriter.writePage(ColumnChunkPageWriteStore.java:89) ~[parquet-hadoop-1.8.1.jar:1.8.1]
at org.apache.parquet.column.impl.ColumnWriterV1.writePage(ColumnWriterV1.java:152) ~[parquet-column-1.8.1.jar:1.8.1]
at org.apache.parquet.column.impl.ColumnWriterV1.accountForValueWritten(ColumnWriterV1.java:113) ~[parquet-column-1.8.1.jar:1.8.1]
at org.apache.parquet.column.impl.ColumnWriterV1.write(ColumnWriterV1.java:205) ~[parquet-column-1.8.1.jar:1.8.1]
at org.apache.parquet.io.MessageColumnIO$MessageColumnIORecordConsumer.addBinary(MessageColumnIO.java:347) ~[parquet-column-1.8.1.jar:1.8.1]
at org.apache.spark.sql.execution.datasources.parquet.ParquetWriteSupport$$anonfun$org$apache$spark$sql$execution$datasources$parquet$ParquetWriteSupport$$makeWriter$9.apply(ParquetWriteSupport.scala:169) ~[spark-sql_2.11-2.1.1.jar:2.1.1]
at org.apache.spark.sql.execution.datasources.parquet.ParquetWriteSupport$$anonfun$org$apache$spark$sql$execution$datasources$parquet$ParquetWriteSupport$$makeWriter$9.apply(ParquetWriteSupport.scala:157) ~[spark-sql_2.11-2.1.1.jar:2.1.1]
at org.apache.spark.sql.execution.datasources.parquet.ParquetWriteSupport$$anonfun$org$apache$spark$sql$execution$datasources$parquet$ParquetWriteSupport$$writeFields$1.apply$mcV$sp(ParquetWriteSupport.scala:114) ~[spark-sql_2.11-2.1.1.jar:2.1.1]
at org.apache.spark.sql.execution.datasources.parquet.ParquetWriteSupport.org$apache$spark$sql$execution$datasources$parquet$ParquetWriteSupport$$consumeField(ParquetWriteSupport.scala:422) ~[spark-sql_2.11-2.1.1.jar:2.1.1]
at org.apache.spark.sql.execution.datasources.parquet.ParquetWriteSupport.org$apache$spark$sql$execution$datasources$parquet$ParquetWriteSupport$$writeFields(ParquetWriteSupport.scala:113) ~[spark-sql_2.11-2.1.1.jar:2.1.1]
at org.apache.spark.sql.execution.datasources.parquet.ParquetWriteSupport$$anonfun$write$1.apply$mcV$sp(ParquetWriteSupport.scala:104) ~[spark-sql_2.11-2.1.1.jar:2.1.1]
at org.apache.spark.sql.execution.datasources.parquet.ParquetWriteSupport.consumeMessage(ParquetWriteSupport.scala:410) ~[spark-sql_2.11-2.1.1.jar:2.1.1]
at org.apache.spark.sql.execution.datasources.parquet.ParquetWriteSupport.write(ParquetWriteSupport.scala:103) ~[spark-sql_2.11-2.1.1.jar:2.1.1]
at org.apache.spark.sql.execution.datasources.parquet.ParquetWriteSupport.write(ParquetWriteSupport.scala:51) ~[spark-sql_2.11-2.1.1.jar:2.1.1]
at org.apache.parquet.hadoop.InternalParquetRecordWriter.write(InternalParquetRecordWriter.java:121) ~[parquet-hadoop-1.8.1.jar:1.8.1]
at org.apache.parquet.hadoop.ParquetRecordWriter.write(ParquetRecordWriter.java:123) ~[parquet-hadoop-1.8.1.jar:1.8.1]
at org.apache.parquet.hadoop.ParquetRecordWriter.write(ParquetRecordWriter.java:42) ~[parquet-hadoop-1.8.1.jar:1.8.1]
at org.apache.spark.sql.execution.datasources.parquet.ParquetOutputWriter.writeInternal(ParquetOutputWriter.scala:42) ~[spark-sql_2.11-2.1.1.jar:2.1.1]
at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.execute(FileFormatWriter.scala:245) ~[spark-sql_2.11-2.1.1.jar:2.1.1]
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:190) ~[spark-sql_2.11-2.1.1.jar:2.1.1]
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:188) ~[spark-sql_2.11-2.1.1.jar:2.1.1]
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1341) ~[spark-core_2.11-2.1.1.jar:2.1.1]
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:193) [spark-sql_2.11-2.1.1.jar:2.1.1]
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$3.apply(FileFormatWriter.scala:129) [spark-sql_2.11-2.1.1.jar:2.1.1]
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$3.apply(FileFormatWriter.scala:128) [spark-sql_2.11-2.1.1.jar:2.1.1]
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) [spark-core_2.11-2.1.1.jar:2.1.1]
at org.apache.spark.scheduler.Task.run(Task.scala:99) [spark-core_2.11-2.1.1.jar:2.1.1]
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322) [spark-core_2.11-2.1.1.jar:2.1.1]
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) [na:1.7.0_75]
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) [na:1.7.0_75]
at java.lang.Thread.run(Thread.java:745) [na:1.7.0_75]
2017-05-19 08:11:45.484 INFO 7740 --- [rker for task 0] o.a.p.h.InternalParquetRecordWriter : Flushing mem columnStore to file. allocated memory: 13,812,677
2017-05-19 08:11:45.499 WARN 7740 --- [rker for task 0] org.apache.hadoop.fs.FileUtil : Failed to delete file or dir [C:\Dev\edi_parquet\GMS_TEST\_temporary\0\_temporary\attempt_20170519081036_0000_m_000000_0\.part-00000-193f8835-6505-4dac-8cb6-0e8c5f3cff1b.snappy.parquet.crc]: it still exists.
2017-05-19 08:11:45.501 WARN 7740 --- [rker for task 0] org.apache.hadoop.fs.FileUtil : Failed to delete file or dir [C:\Dev\edi_parquet\GMS_TEST\_temporary\0\_temporary\attempt_20170519081036_0000_m_000000_0\part-00000-193f8835-6505-4dac-8cb6-0e8c5f3cff1b.snappy.parquet]: it still exists.
2017-05-19 08:11:45.501 WARN 7740 --- [rker for task 0] o.a.h.m.lib.output.FileOutputCommitter : Could not delete file:/C:/Dev/edi_parquet/GMS_TEST/_temporary/0/_temporary/attempt_20170519081036_0000_m_000000_0
2017-05-19 08:11:45.504 ERROR 7740 --- [rker for task 0] o.a.s.s.e.datasources.FileFormatWriter : Job job_20170519081036_0000 aborted.
最佳答案
此问题是由于 parquet 和 spark/hadoop 所需的 snappy-java 版本不兼容造成的
我们在 cloudera 上遇到了 spark 2.3 的相同问题。
对我们有用的解决方案是下载 snappy-java-1.1.2.6.jar并将它放在 Sparks 的 jar 文件夹中解决了这个问题。
这包括在安装了 spark 的所有节点上替换 snappy-java jar。
您可以在以下位置找到 Spark 的 jar 文件夹:
关于java - Apache Spark - Parquet/Snappy 压缩错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44063940/
我正在编写一个具有以下签名的 Java 方法。 void Logger(Method method, Object[] args); 如果一个方法(例如 ABC() )调用此方法 Logger,它应该
我是 Java 新手。 我的问题是我的 Java 程序找不到我试图用作的图像文件一个 JButton。 (目前这段代码什么也没做,因为我只是得到了想要的外观第一的)。这是我的主课 代码: packag
好的,今天我在接受采访,我已经编写 Java 代码多年了。采访中说“Java 垃圾收集是一个棘手的问题,我有几个 friend 一直在努力弄清楚。你在这方面做得怎么样?”。她是想骗我吗?还是我的一生都
我的 friend 给了我一个谜语让我解开。它是这样的: There are 100 people. Each one of them, in his turn, does the following
如果我将使用 Java 5 代码的应用程序编译成字节码,生成的 .class 文件是否能够在 Java 1.4 下运行? 如果后者可以工作并且我正在尝试在我的 Java 1.4 应用程序中使用 Jav
有关于why Java doesn't support unsigned types的问题以及一些关于处理无符号类型的问题。我做了一些搜索,似乎 Scala 也不支持无符号数据类型。限制是Java和S
我只是想知道在一个 java 版本中生成的字节码是否可以在其他 java 版本上运行 最佳答案 通常,字节码无需修改即可在 较新 版本的 Java 上运行。它不会在旧版本上运行,除非您使用特殊参数 (
我有一个关于在命令提示符下执行 java 程序的基本问题。 在某些机器上我们需要指定 -cp 。 (类路径)同时执行java程序 (test为java文件名与.class文件存在于同一目录下) jav
我已经阅读 StackOverflow 有一段时间了,现在我才鼓起勇气提出问题。我今年 20 岁,目前在我的家乡(罗马尼亚克卢日-纳波卡)就读 IT 大学。足以介绍:D。 基本上,我有一家提供簿记应用
我有 public JSONObject parseXML(String xml) { JSONObject jsonObject = XML.toJSONObject(xml); r
我已经在 Java 中实现了带有动态类型的简单解释语言。不幸的是我遇到了以下问题。测试时如下代码: def main() { def ks = Map[[1, 2]].keySet()
一直提示输入 1 到 10 的数字 - 结果应将 st、rd、th 和 nd 添加到数字中。编写一个程序,提示用户输入 1 到 10 之间的任意整数,然后以序数形式显示该整数并附加后缀。 public
我有这个 DownloadFile.java 并按预期下载该文件: import java.io.*; import java.net.URL; public class DownloadFile {
我想在 GUI 上添加延迟。我放置了 2 个 for 循环,然后重新绘制了一个标签,但这 2 个 for 循环一个接一个地执行,并且标签被重新绘制到最后一个。 我能做什么? for(int i=0;
我正在对对象 Student 的列表项进行一些测试,但是我更喜欢在 java 类对象中创建硬编码列表,然后从那里提取数据,而不是连接到数据库并在结果集中选择记录。然而,自从我这样做以来已经很长时间了,
我知道对象创建分为三个部分: 声明 实例化 初始化 classA{} classB extends classA{} classA obj = new classB(1,1); 实例化 它必须使用
我有兴趣使用 GPRS 构建车辆跟踪系统。但是,我有一些问题要问以前做过此操作的人: GPRS 是最好的技术吗?人们意识到任何问题吗? 我计划使用 Java/Java EE - 有更好的技术吗? 如果
我可以通过递归方法反转数组,例如:数组={1,2,3,4,5} 数组结果={5,4,3,2,1}但我的结果是相同的数组,我不知道为什么,请帮助我。 public class Recursion { p
有这样的标准方式吗? 包括 Java源代码-测试代码- Ant 或 Maven联合单元持续集成(可能是巡航控制)ClearCase 版本控制工具部署到应用服务器 最后我希望有一个自动构建和集成环境。
我什至不知道这是否可能,我非常怀疑它是否可能,但如果可以,您能告诉我怎么做吗?我只是想知道如何从打印机打印一些文本。 有什么想法吗? 最佳答案 这里有更简单的事情。 import javax.swin
我是一名优秀的程序员,十分优秀!