- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
在许多情况下,我不清楚通过将两个 monad 与转换器组合而不是使用两个单独的 monad 可以获得什么。显然,使用两个单独的 monad 很麻烦,并且可能在 do 表示法中涉及 do 表示法,但是否存在表达力不够的情况?
一种情况似乎是 List 上的 StateT:组合 monads 不会让你得到正确的类型,如果你确实通过一堆像 Bar 这样的 monads 获得了正确的类型(其中 Bar a = (Reader r (List (Writer w (Identity a))),它没有做正确的事情。
但我想更全面和技术地了解 monad 转换器究竟带来了什么,它们什么时候是必要的,什么时候不是必要的,以及为什么。
为了使这个问题更加集中:
最佳答案
回答您关于 Writer w (Maybe a)
之间区别的问题对比 MaybeT (Writer w) a
,让我们先来看看定义:
newtype WriterT w m a = WriterT { runWriterT :: m (a, w) }
type Writer w = WriterT w Identity
newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }
~~
要表示“结构上类似于”,我们有:
Writer w (Maybe a) == WriterT w Identity (Maybe a)
~~ Identity (Maybe a, w)
~~ (Maybe a, w)
MaybeT (Writer w) a ~~ (Writer w) (Maybe a)
== Writer w (Maybe a)
... same derivation as above ...
~~ (Maybe a, w)
Writer w (Maybe a)
和
MaybeT (Writer w) a
是相同的 - 两者本质上只是一对 Maybe 值和一个
w
.
return
和
>>=
类函数根据不同的情况做非常不同的事情
(Just 3, []::[String])
.使用关联
three_W :: Writer String (Maybe Int)
three_W = return (Just 3)
three_M :: MaybeT (Writer String) Int
three_M = return 3
(Nothing, [])
:
nutin_W :: Writer String (Maybe Int)
nutin_W = return Nothing
nutin_M :: MaybeT (Writer String) Int
nutin_M = MaybeT (return Nothing) -- could also use mzero
add1 :: (Maybe Int, String) -> (Maybe Int, String)
add1 (Nothing, w) = (Nothing w)
add1 (Just x, w) = (Just (x+1), w)
add1_W :: Writer String (Maybe Int) -> Writer String (Maybe Int)
add1_W e = do x <- e
case x of
Nothing -> return Nothing
Just y -> return (Just (y+1))
add1_M :: MaybeT (Writer String) Int -> MaybeT (Writer String) Int
add1_M e = do x <- e; return (e+1)
-- also could use: fmap (+1) e
MaybeT (Writer w) a
是一个可能失败的 Writer-action,失败是
Writer w (Maybe a)
只是一个作家
add1_W
中有示例。函数在哪里
x
进行案例分析.
MaybeT
的另一个原因方法是我们可以编写代码
square x = do tell ("computing the square of " ++ show x)
return (x*x)
WriterT String IO
ReaderT (WriterT String Maybe)
MaybeT (Writer String)
StateT (WriterT String (ReaderT Char IO))
...
square
的返回值不对
Writer String (Maybe Int)
进行类型检查因为
square
不返回
Maybe
.
Writer String (Maybe Int)
中编码时,您的代码明确显示
add1_W
的这个定义:
add1_W e = do x <- e
return $ do
y <- x
return $ y + 1
square
这样的函数
关于haskell - 为什么单子(monad)转换器与堆叠单子(monad)不同?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38710154/
monad 被定义为类别 C 上的内仿函数。假设 C 具有类型 int 和 bool 以及其他构造类型作为对象。现在让我们考虑在这个类别上定义的列表 monad。 根据它的定义,list 是一个内仿函
我试图采取例如ExceptT a (StateT A M) , 对于某些具体类型 A和单子(monad)M ,并将它们包装到我的新自定义单子(monad)中。 首先我确定StateT A M经常出现在
我读到(例如 here 和 here )所有基本单子(monad)(Mabye, Error, ...) 源自其相应的 monad 转换器(MaybeT, ErrorT, ...) 使用身份 mona
Haskell 的状态单子(monad) State s a迫使我保持相同类型的 s在整个做 block 期间。但是由于 state monad 实际上只是一个函数,如果我将它定义为 State
我一直在阅读some materials on free monads而且我真的不认为我离实现更近了,但我认为我更接近于理解它们是什么! 鉴于上述大量资源,我的理解是自由单子(monad)从“计算”工
假设我有一个由两个 monad 操作组成的函数: co::Monad m => m a -> m a -> m a 您可以将 co 视为一个高阶函数,它描述两个单子(monad)操作如何相互协作来完成
在 SO解释了为什么像 scalaz、cats (Scala) 或 Arrow (Kotlin) 中的 Validation 不能是 monad。 据我所知,这是因为他们已经根据应用仿函数对 mona
我对 Haskell 还很陌生,并且慢慢地意识到 Monad fail 的存在有问题。真实世界的 Haskell warns against its use (“再一次,我们建议您几乎总是避免使用失败
我正在阅读现实世界 Haskell 中的 monad 转换器。在以下示例中,堆栈为 Writer在顶部State在Reader之上在IO之上。 {-# Language GeneralizedNewt
我看到的典型 Pause monad 实现如下所示(基于 Giulia Costantini 和 Giuseppe Maggiore 编写的 Friendly F# 的第 5 章)。 open Sys
“Monads 允许程序员使用顺序构建 block 来构建计算”,因此它允许我们组合一些计算。如果是这样,那为什么下面的代码不能运行呢? import Control.Monad.Trans.Stat
这是我第一次认识 Monad Transformers,所以答案可能很明显。 假设我在 StateT MyMonad MyType 类型的 do 块中,我想让另一个相同类型的函数修改状态并返回 MyM
人们通常说类型是单子(monad)。 在某些函数式语言和库(如 Scala/Scalaz)中,您有一个类型构造函数,如 List 或 Option,您可以定义一个与原始类型分离的 Monad 实现。所
我的目标是创建一个函数,该函数在 ReaderT WriterT 堆栈或 RWS 堆栈中使用 list monad。更一般地说,我如何在 mtl 类型类(如 MonadReader、MonadWrit
我只是想知道是否有一个简洁的术语来表示既是单子(monad)又是单子(monad)的东西。我做了一些搜索,我知道these structures exist ,但我还没有找到他们的名字。 最佳答案 在
我正在玩写一个网络应用程序。在这种情况下,我使用 scotty和 redis ,但是这个问题出现在任何 web/db 组合中。在此之前我使用了 happstack,所以我也喜欢那里的一个例子。 Sco
是 x >>= f相当于 retract (liftF x >>= liftF . f) ? 也就是说,从同样是 Monad 的 Functor 构建的自由 monad 的 monad 实例是否将具有
我正在尝试编写一个只能包含 Num 的新 monad。当它失败时,它返回 0,就像 Maybe monad 在失败时返回 Nothing 一样。 这是我到目前为止所拥有的: data (Num a)
我正在使用 operational monad作者:海因里希·阿普菲尔姆斯。 我想用结果类型的 monad 参数化解释器。 我的代码的以下版本编译: {-# LANGUAGE GADTs #-} im
假设所有的 monad 都可以用 Free 来表示。 (如果这不是真的,什么是反例,为什么)?怎么可能the continuation monad或其对应的变压器用 Free 表示或 FreeT -
我是一名优秀的程序员,十分优秀!