gpt4 book ai didi

f# - Floyd Warshall 使用 Alea GPU

转载 作者:行者123 更新时间:2023-12-03 11:48:08 24 4
gpt4 key购买 nike

我一直在尝试使用 Alea GPU 在 F# 中编写并行 Floyd-Warshall 算法,并以另一个用户在此处提供的 CUDA 代码为基础

The Floyd-Warshall algorithm in CUDA

我写了以下简单的实现

type FWModule<'T>(target:GPUModuleTarget, tileDim:int) =
inherit GPUModule(target)

[<Kernel;ReflectedDefinition>]
member this.FloydWKernel (width:int) (k:int) (data:deviceptr<float>) =

let col = blockIdx.x * blockDim.x + threadIdx.x
let row = blockIdx.y

if col >= width then () //out of bounds
let index = width * row + col
let best = __shared__.Variable<float>()

if threadIdx.x = 0 then best := data.[width*row+k]
__syncthreads()

let tmp = data.[k*width+col]

let candidate = !best + tmp
data.[index] <- min data.[index] candidate

member this.LaunchParams width =
let blockdim = dim3(tileDim)
let griddim = dim3(divup width tileDim, width)
LaunchParam(griddim, blockdim)

member this.FloydW (width:int) (k:int) (data:deviceptr<float>) =
let lp = this.LaunchParams width
this.GPULaunch <@ this.FloydWKernel @> lp width k idata odata

member this.FW(size:int, A:float[])=
use deviceArr = this.GPUWorker.Malloc(A)
for k in 0 .. size-1 do
this.FloydW size k deviceArr.Ptr deviceArr.Ptr
deviceArr.Gather()

let tileDim = 256

let apsp = new FWModule<float>(GPUModuleTarget.DefaultWorker, tileDim)

但是,当以下几行在 fsi 中运行时
let m = [|0.0     ; 5.0     ; 9.0     ; infinity;
infinity; 0.0 ; 1.0 ; infinity;
infinity; infinity; 0.0 ; 2.0;
infinity; 3.0 ; infinity; 0.0|];;

apsp.FW (4,m);;

输出是
[|0.0; 5.0; 6.0; 8.0;
4.0; 0.0; 1.0; 3.0;
3.0; 3.0; 0.0; 1.0;
1.0; 1.0; 1.0; 0.0|]

其中不应该给出通常的迭代,顺序 floydwarshall
let floydwarshall (l:int, mat:float[]) =
let a = Array.copy mat
for k in 0 .. (l-1) do
for i in 0 .. (l-1) do
for j in 0 .. (l-1) do
a.[i*l+j] <- min a.[i*l+j] (a.[i*l+k] + a.[k*l+j])
a

给我
floydwarshall (4,m);;
[|0.0 ; 5.0; 6.0; 8.0;
infinity; 0.0; 1.0; 3.0;
infinity; 5.0; 0.0; 2.0;
infinity; 3.0; 4.0; 0.0|]

我的问题是,发生了什么?

最佳答案

这是我们示例库中的一些源代码片段,您可以在 Alea GPU 示例库中找到 http://www.quantalea.com/gallery .

这是单阶段算法。它不是最快的,但相当容易理解。

public static class FloydWarshallSingleStage
{
const int BlockWidth = 16;

/// <summary>
/// Kernel for parallel Floyd Warshall algorithm on GPU.
/// </summary>
/// <param name="u">Number vertex of which is performed relaxation paths [v1, v2]</param>
/// <param name="n">Number of vertices in the graph G:=(V,E), n := |V(G)|</param>
/// <param name="d">Matrix of shortest paths d(G)</param>
/// <param name="p">Matrix of predecessors p(G)</param>
public static void KernelSingleStage(int u, int[,] d, int[,] p)
{
var n = d.GetLength(0);
var v1 = blockDim.y * blockIdx.y + threadIdx.y;
var v2 = blockDim.x * blockIdx.x + threadIdx.x;

if (v1 < n && v2 < n)
{
var newPath = d[v1, u] + d[u, v2];
var oldPath = d[v1, v2];
if (oldPath > newPath)
{
d[v1, v2] = newPath;
p[v1, v2] = p[u, v2];
}
}
}

[GpuManaged]
public static void Run(Gpu gpu, int[,] d, int[,] p)
{
var n = d.GetLength(0);
var gridDim = new dim3((n - 1) / BlockWidth + 1, (n - 1) / BlockWidth + 1, 1);
var blockDim = new dim3(BlockWidth, BlockWidth, 1);
var lp = new LaunchParam(gridDim, blockDim);
for (var u = 0; u < n; u++)
{
gpu.Launch(KernelSingleStage, lp, u, d, p);
}
}
}

多阶段比较复杂,上市时间较长。在这里,我粘贴了一个使用自动内存管理的版本,它大大简化了代码,但也有一些性能影响。多阶段版本使用三个内核来完成工作,并使用平铺来改善内存访问。
public class FloydWarshallMultiStage
{
private const int None = -1;
private const int Inf = 1061109567;

//[GpuParam]
//private readonly Constant<int> BlockSize;
//[GpuParam]
//private readonly Constant<int> ThreadSize;
//[GpuParam]
//private readonly Constant<int> VirtualBlockSize;

private const int BlockSize = 16;
private const int ThreadSize = 2;
private const int VirtualBlockSize = BlockSize*ThreadSize;

public FloydWarshallMultiStage(int blockSize, int threadSize)
{
//BlockSize = new Constant<int>(blockSize);
//ThreadSize = new Constant<int>(threadSize);
//VirtualBlockSize = new Constant<int>(blockSize * threadSize);
}

/// <summary>
/// Kernel for parallel Floyd Warshall algorithm on GPU computing independent blocks.
/// </summary>
/// <param name="block">Number block of which is performed relaxation paths [v1, v2]</param>
/// <param name="n">Number of vertices in the graph G:=(V,E), n := |V(G)|</param>
/// <param name="pitch">Width to get to next row in number of int</param>
/// <param name="d">Matrix of shortest paths d(G)</param>
/// <param name="p">Matrix of predecessors p(G)</param>
public void KernelPhaseOne(int block, int n, int pitch, int[,] d, int[,] p)
{
var newPred = 0;

var tx = threadIdx.x;
var ty = threadIdx.y;

var v1 = VirtualBlockSize*block + ty;
var v2 = VirtualBlockSize*block + tx;

var primaryD = __shared__.Array2D<int>(VirtualBlockSize, VirtualBlockSize);
var primaryP = __shared__.Array2D<int>(VirtualBlockSize, VirtualBlockSize);

if (v1 < n && v2 < n)
{
primaryD[ty, tx] = d[v1, v2];
primaryP[ty, tx] = p[v1, v2];
newPred = primaryP[ty, tx];
}
else
{
primaryD[ty, tx] = Inf;
primaryP[ty, tx] = None;
}

DeviceFunction.SyncThreads();

for (var i = 0; i < VirtualBlockSize; i++)
{
var newPath = primaryD[ty, i] + primaryD[i, tx];

DeviceFunction.SyncThreads();

if (newPath < primaryD[ty, tx])
{
primaryD[ty, tx] = newPath;
newPred = primaryP[i, tx];
}

DeviceFunction.SyncThreads();

primaryP[ty, tx] = newPred;
}

if (v1 < n && v2 < n)
{
d[v1, v2] = primaryD[ty, tx];
p[v1, v2] = primaryP[ty, tx];
}
}

/// <summary>
/// Kernel for parallel Floyd Warshall algorithm on GPU to compute block depending on a single independent block.
/// </summary>
/// <param name="block">Number block of which is performed relaxation paths [v1, v2]</param>
/// <param name="n">Number of vertices in the graph G:=(V,E), n := |V(G)|</param>
/// <param name="pitch"></param>
/// <param name="d">Matrix of shortest paths d(G)</param>
/// <param name="p">Matrix of predecessors p(G)</param>
public void KernelPhaseTwo(int block, int n, int pitch, int[,] d, int[,] p)
{
if (blockIdx.x == block) return;
var newPath = 0;
var newPred = 0;

var tx = threadIdx.x;
var ty = threadIdx.y;

var v1 = VirtualBlockSize*block + ty;
var v2 = VirtualBlockSize*block + tx;

var primaryD = __shared__.Array2D<int>(VirtualBlockSize, VirtualBlockSize);
var currentD = __shared__.Array2D<int>(VirtualBlockSize, VirtualBlockSize);
var primaryP = __shared__.Array2D<int>(VirtualBlockSize, VirtualBlockSize);
var currentP = __shared__.Array2D<int>(VirtualBlockSize, VirtualBlockSize);

if (v1 < n && v2 < n)
{
primaryD[ty, tx] = d[v1, v2];
primaryP[ty, tx] = p[v1, v2];
}
else
{
primaryD[ty, tx] = Inf;
primaryP[ty, tx] = None;
}

// load i-aligned singly dependent blocks
if (blockIdx.y == 0)
{
v1 = VirtualBlockSize*block + ty;
v2 = VirtualBlockSize*blockIdx.x + tx;
}
// load j-aligned singly dependent blocks
else
{
v1 = VirtualBlockSize*blockIdx.x + ty;
v2 = VirtualBlockSize*block + tx;
}

if (v1 < n && v2 < n)
{
currentD[ty, tx] = d[v1, v2];
currentP[ty, tx] = p[v1, v2];
newPred = currentP[ty, tx];
}
else
{
currentD[ty, tx] = Inf;
currentP[ty, tx] = None;
}

DeviceFunction.SyncThreads();

// compute i-aligned singly dependent blocks
if (blockIdx.y == 0)
{
for (var i = 0; i < VirtualBlockSize; i++)
{
newPath = primaryD[ty, i] + currentD[i, tx];

DeviceFunction.SyncThreads();

if (newPath < currentD[ty, tx])
{
currentD[ty, tx] = newPath;
newPred = currentP[i, tx];
}

DeviceFunction.SyncThreads();

currentP[ty, tx] = newPred;
}
}
// compute j-aligned singly dependent blocks
else
{
for (var i = 0; i < VirtualBlockSize; i++)
{
newPath = currentD[ty, i] + primaryD[i, tx];

DeviceFunction.SyncThreads();
if (newPath < currentD[ty, tx])
{
currentD[ty, tx] = newPath;
currentP[ty, tx] = primaryP[i, tx];
}

DeviceFunction.SyncThreads();
}
}

if (v1 < n && v2 < n)
{
d[v1, v2] = currentD[ty, tx];
p[v1, v2] = currentP[ty, tx];
}
}

/// <summary>
/// Kernel for parallel Floyd Warshall algorithm on GPU to compute dependent block depending on the singly dependent blocks.
/// </summary>
/// <param name="block">Number block of which is performed relaxation paths [v1, v2]</param>
/// <param name="n">Number of vertices in the graph G:=(V,E), n := |V(G)|</param>
/// <param name="pitch"></param>
/// <param name="d">Matrix of shortest paths d(G)</param>
/// <param name="p">Matrix of predecessors p(G)</param>
public void KernelPhaseThree(int block, int n, int pitch, int[,] d, int[,] p)
{
if (blockIdx.x == block || blockIdx.y == block) return;

var tx = threadIdx.x*ThreadSize;
var ty = threadIdx.y*ThreadSize;

var v1 = blockDim.y*blockIdx.y*ThreadSize + ty;
var v2 = blockDim.x*blockIdx.x*ThreadSize + tx;

var primaryRowD = __shared__.Array2D<int>(BlockSize*ThreadSize, BlockSize*ThreadSize);
var primaryColD = __shared__.Array2D<int>(BlockSize*ThreadSize, BlockSize*ThreadSize);
var primaryRowP = __shared__.Array2D<int>(BlockSize*ThreadSize, BlockSize*ThreadSize);

var v1Row = BlockSize*block*ThreadSize + ty;
var v2Col = BlockSize*block*ThreadSize + tx;

// load data for virtual block
for (var i = 0; i < ThreadSize; i++)
{
for (var j = 0; j < ThreadSize; j++)
{
var idx = tx + j;
var idy = ty + i;

if (v1Row + i < n && v2 + j < n)
{
primaryRowD[idy, idx] = d[v1Row + i, v2 + j];
primaryRowP[idy, idx] = p[v1Row + i, v2 + j];
}
else
{
primaryRowD[idy, idx] = Inf;
primaryRowP[idy, idx] = None;
}

if (v1 + i < n && v2Col + j < n)
{
primaryColD[idy, idx] = d[v1 + i, v2Col + j];
}
else
{
primaryColD[idy, idx] = Inf;
}
}
}

DeviceFunction.SyncThreads();

// compute data for virtual block
for (var i = 0; i < ThreadSize; i++)
{
for (var j = 0; j < ThreadSize; j++)
{
if (v1 + i < n && v2 + j < n)
{
var path = d[v1 + i, v2 + j];
var predecessor = p[v1 + i, v2 + j];

var idy = ty + i;
var idx = tx + j;

for (var k = 0; k < BlockSize*ThreadSize; k++)
{
var newPath = primaryColD[idy, k] + primaryRowD[k, idx];
if (path > newPath)
{
path = newPath;
predecessor = primaryRowP[k, idx];
}
}
d[v1 + i, v2 + j] = path;
p[v1 + i, v2 + j] = predecessor;
}
}
}
}

/// <summary>
/// Parallel multi-stage Floyd Warshall algorithm on GPU.
/// </summary>
/// <param name="gpu">The GPU on which the kernels should run</param>
/// <param name="n">Number of vertices in the graph G:=(V,E), n := |V(G)|</param>
/// <param name="g">The graph G:=(V,E)</param>
/// <param name="d">Matrix of shortest paths d(G)</param>
/// <param name="p">Matrix of predecessors p(G)</param>
public void Run(Gpu gpu, int[,] d, int[,] p, bool verbose = false)
{
var n = d.GetLength(0);
var gridDim1 = new dim3(1, 1, 1);
var gridDim2 = new dim3((n - 1)/VirtualBlockSize + 1, 2, 1);
var gridDim3 = new dim3((n - 1)/VirtualBlockSize + 1, (n - 1)/VirtualBlockSize + 1, 1);

var blockDim1 = new dim3(VirtualBlockSize, VirtualBlockSize, 1);
var blockDim2 = new dim3(VirtualBlockSize, VirtualBlockSize, 1);
var blockDim3 = new dim3(BlockSize, BlockSize, 1);

var numOfBlock = (n - 1)/VirtualBlockSize + 1;
var pitchInt = n;

if (verbose)
{
Console.WriteLine($"|V| {n}");
Console.WriteLine($"Phase 1: grid dim {gridDim1} block dim {blockDim1}");
Console.WriteLine($"Phase 2: grid dim {gridDim2} block dim {blockDim2}");
Console.WriteLine($"Phase 3: grid dim {gridDim3} block dim {blockDim3}");
}

for (var block = 0; block < numOfBlock; block++)
{
gpu.Launch(KernelPhaseOne, new LaunchParam(gridDim1, blockDim1), block, n, pitchInt, d, p);
gpu.Launch(KernelPhaseTwo, new LaunchParam(gridDim2, blockDim2), block, n, pitchInt, d, p);
gpu.Launch(KernelPhaseThree, new LaunchParam(gridDim3, blockDim3), block, n, pitchInt, d, p);
}
}
}

带有显式内存管理的版本你最好从 http://www.quantalea.com/gallery 下载示例并搜索 Floyd-Warshall。

希望能回答这个问题。

实现基于以下论文:

Ben Lund、Justin W Smith,Floyd-Warshall 的多阶段 CUDA 内核,2010 年。

https://arxiv.org/abs/1001.4108

关于f# - Floyd Warshall 使用 Alea GPU,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36482098/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com