- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在为我的期末项目构建一个神经网络,我需要一些帮助。
我正在尝试构建一个 rnn 来对西类牙语文本进行情感分析。我有大约 200,000 strip 标签的推文,我使用带有西类牙语嵌入的 word2vec 将它们矢量化
数据集和向量化:
我的模型:
上次运行:
我的弱点:
我担心 dynamic_rnn 中的最后一层和最终状态的处理
代码:
# set variables
num_epochs = 15
tweet_size = 20
hidden_size = 200
vec_size = 300
batch_size = 512
number_of_layers= 1
number_of_classes= 3
learning_rate = 0.001
TRAIN_DIR="/checkpoints"
tf.reset_default_graph()
# Create a session
session = tf.Session()
# Inputs placeholders
tweets = tf.placeholder(tf.float32, [None, tweet_size, vec_size], "tweets")
labels = tf.placeholder(tf.float32, [None, number_of_classes], "labels")
# Placeholder for dropout
keep_prob = tf.placeholder(tf.float32)
# make the lstm cells, and wrap them in MultiRNNCell for multiple layers
def lstm_cell():
cell = tf.contrib.rnn.BasicLSTMCell(hidden_size)
return tf.contrib.rnn.DropoutWrapper(cell=cell, output_keep_prob=keep_prob)
multi_lstm_cells = tf.contrib.rnn.MultiRNNCell([lstm_cell() for _ in range(number_of_layers)], state_is_tuple=True)
# Creates a recurrent neural network
outputs, final_state = tf.nn.dynamic_rnn(multi_lstm_cells, tweets, dtype=tf.float32)
with tf.name_scope("final_layer"):
# weight and bias to shape the final layer
W = tf.get_variable("weight_matrix", [hidden_size, number_of_classes], tf.float32, tf.random_normal_initializer(stddev=1.0 / math.sqrt(hidden_size)))
b = tf.get_variable("bias", [number_of_classes], initializer=tf.constant_initializer(1.0))
sentiments = tf.matmul(final_state[-1][-1], W) + b
prob = tf.nn.softmax(sentiments)
tf.summary.histogram('softmax', prob)
with tf.name_scope("loss"):
# define cross entropy loss function
losses = tf.nn.softmax_cross_entropy_with_logits(logits=sentiments, labels=labels)
loss = tf.reduce_mean(losses)
tf.summary.scalar("loss", loss)
with tf.name_scope("accuracy"):
# round our actual probabilities to compute error
accuracy = tf.to_float(tf.equal(tf.argmax(prob,1), tf.argmax(labels,1)))
accuracy = tf.reduce_mean(tf.cast(accuracy, dtype=tf.float32))
tf.summary.scalar("accuracy", accuracy)
# define our optimizer to minimize the loss
with tf.name_scope("train"):
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)
#tensorboard summaries
merged_summary = tf.summary.merge_all()
logdir = "tensorboard/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") + "/"
writer = tf.summary.FileWriter(logdir, session.graph)
# initialize any variables
tf.global_variables_initializer().run(session=session)
# Create a saver for writing training checkpoints.
saver = tf.train.Saver()
# load our data and separate it into tweets and labels
train_tweets = np.load('data_es/train_vec_tweets.npy')
train_labels = np.load('data_es/train_vec_labels.npy')
test_tweets = np.load('data_es/test_vec_tweets.npy')
test_labels = np.load('data_es/test_vec_labels.npy')
**HERE I HAVE THE LOOP FOR TRAINING AND TESTING, I KNOW ITS FINE**
最佳答案
我已经解决了我的问题。在阅读了一些论文并进行了更多的尝试和错误之后,我弄清楚了我的错误所在。
1) 数据集:我有一个很大的数据集,但我没有正确格式化它。
2)初始化:
3)辍学:
4) 降低学习率:
最终结果:
应用所有这些更改后,我的测试准确率达到了 84%,这是可以接受的,因为我的数据集仍然很糟糕。
我的最终网络配置是:
关于Tensorflow lstm 用于情感分析而不是学习。更新,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46576332/
我无法准确理解 LSTM 单元的范围——它如何映射到网络层。来自格雷夫斯 (2014): 在我看来,在单层网络中,layer = lstm 单元。这实际上如何在多层 rnn 中工作? 三层RNN LS
这是代码 model = Sequential() model.add(LSTM(256, input_shape=(None, 1), return_sequences=True)) model.a
为什么我们需要在pytorch中初始化LSTM中的隐藏状态h0。由于 h0 无论如何都会被计算并被覆盖?是不是很像 整合一个一 = 0 一个= 4 即使我们不做a=0,也应该没问题.. 最佳答案 重点
我正在尝试使用 LSTM 在 Deeplearning4j 中进行一些简单的时间序列预测,但我很难让它工作。 我有一个简单的文本文件,其中包含如下所示的数字列表,并希望网络学习预测下一个数字。 有没有
在大量阅读和绘制图表之后,我想我已经提出了一个模型,我可以将其用作更多测试我需要调整哪些参数和功能的基础。但是,我对如何实现以下测试用例感到困惑(所有数字都比最终模型小几个数量级,但我想从小处着手):
我正在尝试实现“Livelinet:用于预测教育视频中的活力的多模式深度循环神经网络”中的结构。 为了简单说明,我将 10 秒音频剪辑分成 10 个 1 秒音频剪辑,并从该 1 秒音频剪辑中获取频谱图
我正在 Tensorflow 中制作 LSTM 神经网络。 输入张量大小为 92。 import tensorflow as tf from tensorflow.contrib import rnn
我正在尝试 keras IMDB 数据的示例,数据形状是这样的: x_train shape: (25000, 80) 我只是把keras例子的原始代码改成了这样的代码: model = Sequen
我需要了解如何使用 torch.nn 的不同组件正确准备批量训练的输入。模块。具体来说,我希望为 seq2seq 模型创建一个编码器-解码器网络。 假设我有一个包含这三层的模块,按顺序: nn.Emb
我很难概念化 Keras 中有状态 LSTM 和无状态 LSTM 之间的区别。我的理解是,在每个批处理结束时,在无状态情况下“网络状态被重置”,而对于有状态情况,网络状态会为每个批处理保留,然后必须在
nn.Embedding() 是学习 LSTM 所必需的吗? 我在 PyTorch 中使用 LSTM 来预测 NER - 此处是类似任务的示例 - https://pytorch.org/tutori
我正在尝试找出适合我想要拟合的模型的正确语法。这是一个时间序列预测问题,我想在将时间序列输入 LSTM 之前使用一些密集层来改进时间序列的表示。 这是我正在使用的虚拟系列: import pandas
我在理解堆叠式 LSTM 网络中各层的输入-输出流时遇到了一些困难。假设我已经创建了一个如下所示的堆叠式 LSTM 网络: # parameters time_steps = 10 features
LSTM 类中的默认非线性激活函数是 tanh。我希望在我的项目中使用 ReLU。浏览文档和其他资源,我无法找到一种简单的方法来做到这一点。我能找到的唯一方法是定义我自己的自定义 LSTMCell,但
在 PyTorch 中,有一个 LSTM 模块,除了输入序列、隐藏状态和单元状态之外,它还接受 num_layers 参数,该参数指定我们的 LSTM 有多少层。 然而,还有另一个模块 LSTMCel
没什么好说的作为介绍:我想在 TensorFlow 中将 LSTM 堆叠在另一个 LSTM 上,但一直被错误阻止,我不太明白,更不用说单独解决了。 代码如下: def RNN(_X, _istate,
有人可以解释一下吗?我知道双向 LSTM 具有前向和反向传递,但是与单向 LSTM 相比,它有什么优势? 它们各自更适合什么? 最佳答案 LSTM 的核心是使用隐藏状态保留已经通过它的输入信息。 单向
我想构建一个带有特殊词嵌入的 LSTM,但我对它的工作原理有一些疑问。 您可能知道,一些 LSTM 对字符进行操作,因此它是字符输入,字符输出。我想做同样的事情,通过对单词的抽象来学习使用嵌套的 LS
我编写了一个LSTM回归模型。它是最后一个LSTM层的BATCH_SIZE=1和RETURN_Sequence=True的模型。我还设置了VERIFICATION_DATA和耐心进行培训。但似乎存在一
给定一个训练有素的 LSTM 模型,我想对单个时间步执行推理,即以下示例中的 seq_length = 1。在每个时间步之后,需要为下一个“批处理”记住内部 LSTM(内存和隐藏)状态。在推理的最开始
我是一名优秀的程序员,十分优秀!