gpt4 book ai didi

java - 如何改进此搜索算法运行时?

转载 作者:行者123 更新时间:2023-12-03 11:19:44 27 4
gpt4 key购买 nike

我正在努力解决几年前我遇到的一个面试问题,为即将到来的面试做准备。该问题在 pdf 中概述 here .我使用 DFS 编写了一个简单的解决方案,该解决方案适用于文档中概述的示例,但我无法让程序满足以下标准

Your code should produce correct answers in under a second for a10,000 x 10,000 Geo GeoBlock containing 10,000 occupied Geos.


为了测试这一点,我生成了一个包含 10000 个随机条目的 CSV 文件,当我针对它运行代码时,平均只需 2 秒多一点就可以找到其中的最大地理块。除了在更快的笔记本电脑上运行之外,我不确定可以对我的方法进行哪些改进以将运行时间减少一半以上。从我的调查来看,搜索本身似乎只需要大约 8 毫秒,所以也许我将数据加载到内存中的方式是低效的部分?
我非常感谢有关如何改进的建议。见下面的代码:
GeoBlockAnalyzer
package analyzer.block.geo.main;

import analyzer.block.geo.model.Geo;
import analyzer.block.geo.result.GeoResult;

import java.awt.*;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.time.LocalDate;
import java.time.format.DateTimeFormatter;
import java.time.format.DateTimeParseException;
import java.util.List;
import java.util.*;

public class GeoBlockAnalyzer {

private static final DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyy-MM-dd");
private final int width;
private final int height;
private final String csvFilePath;
private GeoResult result = new GeoResult();

// Map of the geo id and respective geo object
private final Map<Integer, Geo> geoMap = new HashMap<>();
// Map of coordinates to each geo in the grid
private final Map<Point, Geo> coordMap = new HashMap<>();

/**
* Constructs a geo grid of the given width and height, populated with the geo data provided in
* the csv file
*
* @param width the width of the grid
* @param height the height of the grid
* @param csvFilePath the csv file containing the geo data
* @throws IOException
*/
public GeoBlockAnalyzer(final int width, final int height, final String csvFilePath)
throws IOException {

if (!Files.exists(Paths.get(csvFilePath)) || Files.isDirectory(Paths.get(csvFilePath))) {
throw new FileNotFoundException(csvFilePath);
}

if (width <= 0 || height <= 0) {
throw new IllegalArgumentException("Input height or width is 0 or smaller");
}

this.width = width;
this.height = height;
this.csvFilePath = csvFilePath;

populateGeoGrid();
populateCoordinatesMap();
calculateGeoNeighbours();
// printNeighbours();
}

/** @return the largest geo block in the input grid */
public GeoResult getLargestGeoBlock() {
for (final Geo geo : this.geoMap.values()) {
final List<Geo> visited = new ArrayList<>();
search(geo, visited);
}
return this.result;
}

/**
* Iterative DFS implementation to find largest geo block.
*
* @param geo the geo to be evaluated
* @param visited list of visited geos
*/
private void search(Geo geo, final List<Geo> visited) {
final Deque<Geo> stack = new LinkedList<>();
stack.push(geo);
while (!stack.isEmpty()) {
geo = stack.pop();
if (visited.contains(geo)) {
continue;
}
visited.add(geo);

final List<Geo> neighbours = geo.getNeighbours();
for (int i = neighbours.size() - 1; i >= 0; i--) {
final Geo g = neighbours.get(i);
if (!visited.contains(g)) {
stack.push(g);
}
}
}
if (this.result.getSize() < visited.size()) {
this.result = new GeoResult(visited);
}
}

/**
* Creates a map of the geo grid from the csv file data
*
* @throws IOException
*/
private void populateGeoGrid() throws IOException {
try (final BufferedReader br = Files.newBufferedReader(Paths.get(this.csvFilePath))) {
int lineNumber = 0;
String line = "";
while ((line = br.readLine()) != null) {
lineNumber++;
final String[] geoData = line.split(",");
LocalDate dateOccupied = null;

// Handle for empty csv cells
for (int i = 0; i < geoData.length; i++) {
// Remove leading and trailing whitespace
geoData[i] = geoData[i].replace(" ", "");

if (geoData[i].isEmpty() || geoData.length > 3) {
throw new IllegalArgumentException(
"There is missing data in the csv file at line: " + lineNumber);
}
}
try {
dateOccupied = LocalDate.parse(geoData[2], formatter);
} catch (final DateTimeParseException e) {
throw new IllegalArgumentException("There input date is invalid on line: " + lineNumber);
}
this.geoMap.put(
Integer.parseInt(geoData[0]),
new Geo(Integer.parseInt(geoData[0]), geoData[1], dateOccupied));
}
}
}

/** Create a map of each coordinate in the grid to its respective geo */
private void populateCoordinatesMap() {
// Using the geo id, calculate its point on the grid
for (int i = this.height - 1; i >= 0; i--) {
int blockId = (i * this.width);
for (int j = 0; j < this.width; j++) {
if (this.geoMap.containsKey(blockId)) {
final Geo geo = this.geoMap.get(blockId);
geo.setCoordinates(i, j);
this.coordMap.put(geo.getCoordinates(), geo);
}
blockId++;
}
}
}

private void calculateGeoNeighbours() {
for (final Geo geo : this.geoMap.values()) {
addNeighboursToGeo(geo);
}
}

private void addNeighboursToGeo(final Geo geo) {
final int x = geo.getCoordinates().x;
final int y = geo.getCoordinates().y;

final Point[] possibleNeighbours = {
new Point(x, y + 1), new Point(x - 1, y), new Point(x + 1, y), new Point(x, y - 1)
};

Geo g;
for (final Point p : possibleNeighbours) {
if (this.coordMap.containsKey(p)) {
g = this.coordMap.get(p);
if (g != null) {
geo.getNeighbours().add(g);
}
}
}
}

private void printNeighbours() {
for (final Geo geo : this.geoMap.values()) {
System.out.println("Geo " + geo.getId() + " has the following neighbours: ");
for (final Geo g : geo.getNeighbours()) {
System.out.println(g.getId());
}
}
}
}
GeoResult
package analyzer.block.geo.result;

import analyzer.block.geo.model.Geo;

import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;

public class GeoResult {

private final List<Geo> geosInBlock = new ArrayList<>();

public GeoResult() {
}

public GeoResult(final List<Geo> geosInBlock) {
this.geosInBlock.addAll(geosInBlock);
}

public List<Geo> getGeosInBlock() {
this.geosInBlock.sort(Comparator.comparingInt(Geo::getId));
return this.geosInBlock;
}

public int getSize() {
return this.geosInBlock.size();
}

@Override
public String toString() {
final StringBuilder sb = new StringBuilder();
sb.append("The geos in the largest cluster of occupied Geos for this GeoBlock are: \n");
for(final Geo geo : this.geosInBlock) {
sb.append(geo.toString()).append("\n");
}
return sb.toString();
}
}
地理
package analyzer.block.geo.model;

import java.awt.Point;
import java.time.LocalDate;
import java.util.ArrayList;
import java.util.List;
import java.util.Objects;

public class Geo {

private final int id;
private final String name;
private final LocalDate dateOccupied;
private final Point coordinate;
private final List<Geo> neighbours = new ArrayList<>();

public Geo (final int id, final String name, final LocalDate dateOccupied) {
this.id = id;
this.name = name;
this.dateOccupied = dateOccupied;
this.coordinate = new Point();
}

public int getId() {
return this.id;
}

public String getName() {
return this.name;
}

public LocalDate getDateOccupied() {
return this.dateOccupied;
}

public void setCoordinates(final int x, final int y) {
this.coordinate.setLocation(x, y);
}

public Point getCoordinates() {
return this.coordinate;
}

public String toString() {
return this.id + ", " + this.name + ", " + this.dateOccupied;
}

public List<Geo> getNeighbours() {
return this.neighbours;
}

@Override
public int hashCode() {
return Objects.hash(this.id, this.name, this.dateOccupied);
}

@Override
public boolean equals(final Object obj) {
if(this == obj) {
return true;
}

if(obj == null || this.getClass() != obj.getClass()) {
return false;
}

final Geo geo = (Geo) obj;
return this.id == geo.getId() &&
this.name.equals(geo.getName()) &&
this.dateOccupied == geo.getDateOccupied();
}
}

最佳答案

如果没有测试,在我看来,这里的主要块是 map 的文字创建,可能多达 100,000,000 个单元格。如果我们改为 labeled 就没有必要了每个 CSV 条目并有一个函数 getNeighbours(id, width, height)返回可能的邻居 ID 列表(想想模块化算法)。当我们依次迭代每个 CSV 条目时,如果 (1) 已经看到所有邻居 ID 都具有相同的标签,我们将使用该标签标记新 ID;如果 (2) 没有看到邻居,我们将为新 ID 使用新标签;如果(3)在看到的邻居 ID 之间存在两个或多个不同的标签,我们会将它们组合成一个标签(比如最小标签),通过将标签映射到其“最终”标签的散列。还存储每个标签的总和和大小。您当前的解决方案是 O(n) ,其中 nwidth x height .这里的想法是 O(n) ,其中 n是被占用的 Geos 的数量。
这里有一些 Python 中非常粗糙的东西,我不希望处理所有场景,但希望能给你一个想法(对不起,我不知道 Java):

def get_neighbours(id, width, height):
neighbours = []

if id % width != 0:
neighbours.append(id - 1)
if (id + 1) % width != 0:
neighbours.append(id + 1)
if id - width >= 0:
neighbours.append(id - width)
if id + width < width * height:
neighbours.append(id + width)

return neighbours

def f(data, width, height):
ids = {}
labels = {}
current_label = 0

for line in data:
[idx, name, dt] = line.split(",")
idx = int(idx)
this_label = None
neighbours = get_neighbours(idx, width, height)
no_neighbour_was_seen = True

for n in neighbours:
# A neighbour was seen
if n in ids:
no_neighbour_was_seen = False

# We have yet to assign a label to this ID
if not this_label:
this_label = ids[n]["label"]
ids[idx] = {"label": this_label, "data": name + " " + dt}
final_label = labels[this_label]["label"]
labels[final_label]["size"] += 1
labels[final_label]["sum"] += idx
labels[final_label]["IDs"] += [idx]

# This neighbour has yet to be connected
elif ids[n]["label"] != this_label:
old_label = ids[n]["label"]
old_obj = labels[old_label]
final_label = labels[this_label]["label"]
ids[n]["label"] = final_label
labels[final_label]["size"] += old_obj["size"]
labels[final_label]["sum"] += old_obj["sum"]
labels[final_label]["IDs"] += old_obj["IDs"]
del labels[old_label]

if no_neighbour_was_seen:
this_label = current_label
current_label += 1
ids[idx] = {"label": this_label, "data": name + " " + dt}
labels[this_label] = {"label": this_label, "size": 1, "sum": idx, "IDs": [idx]}

for i in ids:
print i, ids[i]["label"], ids[i]["data"]
print ""
for i in labels:
print i
print labels[i]

return labels, ids


data = [
"4, Tom, 2010-10-10",
"5, Katie, 2010-08-24",
"6, Nicole, 2011-01-09",
"11, Mel, 2011-01-01",
"13, Matt, 2010-10-14",
"15, Mel, 2011-01-01",
"17, Patrick, 2011-03-10",
"21, Catherine, 2011-02-25",
"22, Michael, 2011-02-25"
]

f(data, 4, 7)
print ""
f(data, 7, 4)
输出:
"""
4 0 Tom 2010-10-10
5 0 Katie 2010-08-24
6 0 Nicole 2011-01-09
11 1 Mel 2011-01-01
13 2 Matt 2010-10-14
15 1 Mel 2011-01-01
17 2 Patrick 2011-03-10
21 2 Catherine 2011-02-25
22 2 Michael 2011-02-25

0
{'sum': 15, 'size': 3, 'IDs': [4, 5, 6], 'label': 0}
1
{'sum': 26, 'size': 2, 'IDs': [11, 15], 'label': 1}
2
{'sum': 73, 'size': 4, 'IDs': [13, 17, 21, 22], 'label': 2}

---

4 0 Tom 2010-10-10
5 0 Katie 2010-08-24
6 0 Nicole 2011-01-09
11 0 Mel 2011-01-01
13 0 Matt 2010-10-14
15 3 Mel 2011-01-01
17 2 Patrick 2011-03-10
21 3 Catherine 2011-02-25
22 3 Michael 2011-02-25

0
{'sum': 39, 'size': 5, 'IDs': [4, 5, 6, 11, 13], 'label': 0}
2
{'sum': 17, 'size': 1, 'IDs': [17], 'label': 2}
3
{'sum': 58, 'size': 3, 'IDs': [21, 22, 15], 'label': 3}
"""

关于java - 如何改进此搜索算法运行时?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64099842/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com