gpt4 book ai didi

java - 在二维数组上查找第 K 个最小元素(或中值)的最快算法?

转载 作者:行者123 更新时间:2023-12-03 11:18:46 33 4
gpt4 key购买 nike

我在相关主题上看到了很多 SO 主题,但没有一个提供有效的方法。
我要找k-th二维数组上的最小元素(或中值)[1..M][1..N]其中每一行按升序排序并且所有元素都是不同的。
我认为有O(M log MN)解决方案,但我不知道实现。 (中位数的中位数或使用具有线性复杂性的分区是一些方法,但不再知道......)。
这是一个旧的谷歌面试问题,可以在Here上搜索。 .
但现在我想提示或描述 最有效的算法 ( 最快的 之一)。
我还阅读了一篇关于 here 的论文但我不明白。
更新 1:找到一个解决方案 here但是当维度是奇数时。

最佳答案

所以要解决这个问题,它有助于解决一个稍微不同的问题。我们想知道每行中第 k 个截止点所在位置的上限/下限。那么我们就可以通过,验证下界及以下的事物数 k,并且它们之间只有一个值。
我已经提出了一种策略,可以在所有行中同时对这些边界进行二分搜索。作为二分查找,它“应该”取 O(log(n))通过。每关涉及 O(m)共工作 O(m log(n))次。我把应该放在引号中,因为我没有证据证明它实际上需要 O(log(n))通过。事实上,有可能在一行中过于激进,从其他行中发现所选的枢轴已关闭,然后不得不后退。但我相信它几乎没有后退,实际上是 O(m log(n)) .
策略是跟踪下限、上限和中间的每一行。每次通过我们都会对范围进行一系列加权,以降低、降低到中、从中到上、从上到结束,权重是其中的事物数量,值是系列中的最后一个。然后我们在该数据结构中找到第 k 个值(按权重),并将其用作我们在每个维度中进行二分搜索的主元。
如果枢轴超出从下到上的范围,我们通过在纠正错误的方向上加宽间隔来进行纠正。
当我们有正确的序列时,我们就有了答案。
有很多边缘情况,所以盯着完整的代码可能会有所帮助。
我还假设每一行的所有元素都是不同的。如果不是,您可能会陷入无限循环。 (解决这意味着更多的边缘情况......)

import random

# This takes (k, [(value1, weight1), (value2, weight2), ...])
def weighted_kth (k, pairs):
# This does quickselect for average O(len(pairs)).
# Median of medians is deterministically the same, but a bit slower
pivot = pairs[int(random.random() * len(pairs))][0]

# Which side of our answer is the pivot on?
weight_under_pivot = 0
pivot_weight = 0
for value, weight in pairs:
if value < pivot:
weight_under_pivot += weight
elif value == pivot:
pivot_weight += weight

if weight_under_pivot + pivot_weight < k:
filtered_pairs = []
for pair in pairs:
if pivot < pair[0]:
filtered_pairs.append(pair)
return weighted_kth (k - weight_under_pivot - pivot_weight, filtered_pairs)
elif k <= weight_under_pivot:
filtered_pairs = []
for pair in pairs:
if pair[0] < pivot:
filtered_pairs.append(pair)
return weighted_kth (k, filtered_pairs)
else:
return pivot

# This takes (k, [[...], [...], ...])
def kth_in_row_sorted_matrix (k, matrix):
# The strategy is to discover the k'th value, and also discover where
# that would be in each row.
#
# For each row we will track what we think the lower and upper bounds
# are on where it is. Those bounds start as the start and end and
# will do a binary search.
#
# In each pass we will break each row into ranges from start to lower,
# lower to mid, mid to upper, and upper to end. Some ranges may be
# empty. We will then create a weighted list of ranges with the weight
# being the length, and the value being the end of the list. We find
# where the k'th spot is in that list, and use that approximate value
# to refine each range. (There is a chance that a range is wrong, and
# we will have to deal with that.)
#
# We finish when all of the uppers are above our k, all the lowers
# one are below, and the upper/lower gap is more than 1 only when our
# k'th element is in the middle.

# Our data structure is simply [row, lower, upper, bound] for each row.
data = [[row, 0, min(k, len(row)-1), min(k, len(row)-1)] for row in matrix]
is_search = True
while is_search:
pairs = []
for row, lower, upper, bound in data:
# Literal edge cases
if 0 == upper:
pairs.append((row[upper], 1))
if upper < bound:
pairs.append((row[bound], bound - upper))
elif lower == bound:
pairs.append((row[lower], lower + 1))
elif lower + 1 == upper: # No mid.
pairs.append((row[lower], lower + 1))
pairs.append((row[upper], 1))
if upper < bound:
pairs.append((row[bound], bound - upper))
else:
mid = (upper + lower) // 2
pairs.append((row[lower], lower + 1))
pairs.append((row[mid], mid - lower))
pairs.append((row[upper], upper - mid))
if upper < bound:
pairs.append((row[bound], bound - upper))

pivot = weighted_kth(k, pairs)

# Now that we have our pivot, we try to adjust our parameters.
# If any adjusts we continue our search.
is_search = False
new_data = []
for row, lower, upper, bound in data:
# First cases where our bounds weren't bounds for our pivot.
# We rebase the interval and either double the range.
# - double the size of the range
# - go halfway to the edge
if 0 < lower and pivot <= row[lower]:
is_search = True
if pivot == row[lower]:
new_data.append((row, lower-1, min(lower+1, bound), bound))
elif upper <= lower:
new_data.append((row, lower-1, lower, bound))
else:
new_data.append((row, max(lower // 2, lower - 2*(upper - lower)), lower, bound))
elif upper < bound and row[upper] <= pivot:
is_search = True
if pivot == row[upper]:
new_data.append((row, upper-1, upper+1, bound))
elif lower < upper:
new_data.append((row, upper, min((upper+bound+1)//2, upper + 2*(upper - lower)), bound))
else:
new_data.append((row, upper, upper+1, bound))
elif lower + 1 < upper:
if upper == lower+2 and pivot == row[lower+1]:
new_data.append((row, lower, upper, bound)) # Looks like we found the pivot.
else:
# We will split this interval.
is_search = True
mid = (upper + lower) // 2
if row[mid] < pivot:
new_data.append((row, mid, upper, bound))
elif pivot < row[mid] pivot:
new_data.append((row, lower, mid, bound))
else:
# We center our interval on the pivot
new_data.append((row, (lower+mid)//2, (mid+upper+1)//2, bound))
else:
# We look like we found where the pivot would be in this row.
new_data.append((row, lower, upper, bound))
data = new_data # And set up the next search
return pivot

关于java - 在二维数组上查找第 K 个最小元素(或中值)的最快算法?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64916213/

33 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com