- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我认为元编程在这里是正确的术语。
我希望能够使用 data.table,就像在 webapp 中使用 MySQL 一样。也就是说,Web 用户使用一些 Web 前端(例如 Shiny 服务器)来选择数据库、选择要过滤的列、选择要分组的列、选择要聚合的列和聚合函数。我想使用 R 和 data.table 作为查询、聚合等的后端。假设前端存在并且 R 将这些变量作为字符串并进行验证等。
我编写了以下函数来构建 data.table 表达式并使用 R 的 parse/eval 元编程功能来运行它。这是一种合理的方法吗?
我包含了所有相关的代码来测试这个。获取此代码(为安全起见阅读后!)和
运行 test_agg_meta() 来测试它。这只是一个开始。我可以添加更多功能。
但我的主要问题是我是否严重过度思考了这一点。当所有输入都事先未确定而不诉诸解析/评估元编程时,是否有更直接的方法来使用 data.table?
我也知道“with”语句和其他一些无糖功能方法,但不知道它们是否可以处理所有情况。
require(data.table)
fake_data<-function(num=12){
#make some fake data
x=1:num
lets=letters[1:num]
data=data.table(
u=rep(c("A","B","C"),floor(num/3)),
v=x %%2, w=lets, x=x, y=x^2, z=1-x)
return(data)
}
data_table_meta<-function(
#aggregate a data.table meta-programmatically
data_in=fake_data(),
filter_cols=NULL,
filter_min=NULL,
filter_max=NULL,
groupby_cols=NULL,
agg_cols=setdiff(names(data_in),groupby_cols),
agg_funcs=NULL,
verbose=F,
validate=T,
jsep="_"
){
all_cols=names(data_in)
if (validate) {
stopifnot(length(filter_cols) == length(filter_min))
stopifnot(length(filter_cols) == length(filter_max))
stopifnot(filter_cols %in% all_cols)
stopifnot(groupby_cols %in% all_cols)
stopifnot(length(intersect(agg_cols,groupby_cols)) == 0)
stopifnot((length(agg_cols) == length(agg_funcs)) | (length(agg_funcs)==1) | (length(agg_funcs)==0))
}
#build the command
#defaults
i_filter=""
j_select=""
n_agg_funcs=length(agg_funcs)
n_agg_cols=length(agg_cols)
n_groupby_cols=length(groupby_cols)
if (n_agg_funcs == 0) {
#NULL
print("NULL")
j_select=paste(agg_cols,collapse=",")
j_select=paste("list(",j_select,")")
} else {
agg_names=paste(agg_funcs,agg_cols,sep=jsep)
jsels=paste(agg_names,"=",agg_funcs,"(",agg_cols,")",sep="")
if (n_groupby_cols>0) jsels=c(jsels,"N_Rows_Aggregated=.N")
j_select=paste(jsels,collapse=",")
j_select=paste("list(",j_select,")")
}
groupby=""
if (n_groupby_cols>0) {
groupby=paste(groupby_cols,collapse=",")
groupby=paste("by=list(",groupby,")",sep="")
}
n_filter_cols=length(filter_cols)
if (n_filter_cols > 0) {
i_filters=rep("",n_filter_cols)
for (i in 1:n_filter_cols) {
i_filters[i]=paste(" (",filter_cols[i]," >= ",filter_min[i]," & ",filter_cols[i]," <= ",filter_max[i],") ",sep="")
}
i_filter=paste(i_filters,collapse="&")
}
command=paste("data_in[",i_filter,",",j_select,",",groupby,"]",sep="")
if (verbose == 2) {
print("all_cols:")
print(all_cols)
print("filter_cols:")
print(filter_cols)
print("agg_cols:")
print(agg_cols)
print("filter_min:")
print(filter_min)
print("filter_max:")
print(filter_max)
print("groupby_cols:")
print(groupby_cols)
print("agg_cols:")
print(agg_cols)
print("agg_funcs:")
print(agg_funcs)
print("i_filter")
print(i_filter)
print("j_select")
print(j_select)
print("groupby")
print(groupby)
print("command")
print(command)
}
print(paste("evaluating command:",command))
eval(parse(text=command))
}
my_agg<-function(data=fake_data()){
data_out=data[
i=x<=5,
j=list(
mean_x=mean(x),
mean_y=mean(y),
sum_z=sum(z),
N_Rows_Aggregated=.N
),
by=list(u,v)]
return(data_out)
}
my_agg_meta<-function(data=fake_data()){
#should give same results as my_agg
data_out=data_table_meta(data,
filter_cols=c("x"),
filter_min=c(-10000),
filter_max=c(5),
groupby_cols=c("u","v"),
agg_cols=c("x","y","z"),
agg_funcs=c("mean","mean","sum"),
verbose=T,
validate=T,
jsep="_")
return(data_out)
}
test_agg_meta<-function(){
stopifnot(all(my_agg()==my_agg_meta()))
print("Congrats, you passed the test")
}
最佳答案
虽然您的函数看起来很有趣,但我相信您是在问是否还有其他方法可以实现。
就个人而言,我喜欢使用这样的东西:
## SAMPLE DATA
DT1 <- data.table(id=sample(LETTERS[1:4], 20, TRUE), Col1=1:20, Col2=rnorm(20))
DT2 <- data.table(id=sample(LETTERS[3:8], 20, TRUE), Col1=sample(100:500, 20), Col2=rnorm(20))
DT3 <- data.table(id=sample(LETTERS[19:20], 20, TRUE), Col1=sample(100:500, 20), Col2=rnorm(20))
R
中的任何对象一样
# use strings to select the table
tablesSelected <- "DT3"
# use get to access them
get(tablesSelected)
# and we can perform operations:
get(tablesSelected)[, list(C1mean=mean(Col1), C2mean=mean(Col2))]
.SDcols
争论。
columnsSelected <- c("Col1", "Col2")
## Here we are simply accessing those columns
DT3[, .SD, .SDcols = columnsSelected]
## apply a function to each column
DT3[, lapply(.SD, mean), .SDcols = columnsSelected]
with
:
# This works for displaying
DT3[, columnsSelected, with=FALSE]
..
访问快捷方式
columnsSelected
从“上一层”:
DT3[ , ..columnsSelected]
with=FALSE
,然后我们不能以通常的方式直接对列进行操作
## This does NOT work:
DT3[, someFunc(columnsSelected), with=FALSE]
## This DOES work:
DT3[, someFunc(.SD), .SDcols=columnsSelected]
## This also works, but is less ideal, ie assigning to new columns is more cumbersome
DT3[, columnsSelected, with=FALSE][, someFunc(.SD)]
get
,但这有点棘手。
.SDcols
是要走的路
## we need to use `get`, but inside `j`
## AND IN A WRAPPER FUNCTION <~~~~~ THIS IS VITAL
DT3[, lapply(columnsSelected, function(.col) get(.col))]
## We can execute functions on the columns:
DT3[, lapply(columnsSelected, function(.col) mean( get(.col) ))]
## And of course, we can use more involved-functions, much like any *ply call:
# using .SDcols
DT3[, lapply(.SD, function(.col) c(mean(.col) + 2*sd(.col), mean(.col) - 2*sd(.col))), .SDcols = columnsSelected]
# using `get` and assigning the value to a var.
# Note that this method has memory drawbacks, so using .SDcols is preferred
DT3[, lapply(columnsSelected, function(.col) {TheCol <- get(.col); c(mean(TheCol) + 2*sd(TheCol), mean(TheCol) - 2*sd(TheCol))})]
## this DOES NOT work (need ..columnsSelected)
DT3[, columnsSelected]
## netiher does this
DT3[, eval(columnsSelected)]
## still does not work:
DT3[, lapply(columnsSelected, get)]
# Using the `.SDcols` method: change names using `setnames` (lowercase "n")
DT3[, setnames(.SD, c("new.Name1", "new.Name2")), .SDcols =columnsSelected]
# Using the `get` method:
## The names of the new columns will be the names of the `columnsSelected` vector
## Thus, if we want to preserve the names, use the following:
names(columnsSelected) <- columnsSelected
DT3[, lapply(columnsSelected, function(.col) get(.col))]
## we can also use this trick to give the columns new names
names(columnsSelected) <- c("new.Name1", "new.Name2")
DT3[, lapply(columnsSelected, function(.col) get(.col))]
by
?
# `by` is straight forward, you can use a vector of strings in the `by` argument.
# lets add another column to show how to use two columns in `by`
DT3[, secondID := sample(letters[1:2], 20, TRUE)]
# here is our string vector:
byCols <- c("id", "secondID")
# and here is our call
DT3[, lapply(columnsSelected, function(.col) mean(get(.col))), by=byCols]
get(tablesSelected)[, .SD, .SDcols=columnsSelected]
## OR WITH MULTIPLE TABLES
tablesSelected <- c("DT1", "DT3")
lapply(tablesSelected, function(.T) get(.T)[, .SD, .SDcols=columnsSelected])
# we may want to name the vector for neatness, since
# the resulting list inherits the names.
names(tablesSelected) <- tablesSelected
data.table
是通过引用传递的,很容易有一个表列表,一个单独的要添加的列列表和另一个要操作的列列表,然后将它们放在一起以执行类似的操作 - 但具有不同的输入 - - 在你所有的 table 上。
data.frame
做类似的事情相反,无需重新分配最终结果。
newColumnsToAdd <- c("UpperBound", "LowerBound")
FunctionToExecute <- function(vec) c(mean(vec) - 2*sd(vec), mean(vec) + 2*sd(vec))
# note the list of column names per table!
columnsUsingPerTable <- list("DT1" = "Col1", DT2 = "Col2", DT3 = "Col1")
tablesSelected <- names(columnsUsingPerTable)
byCols <- c("id")
# TADA:
dummyVar <- # I use `dummyVar` because I do not want to display the output
lapply(tablesSelected, function(.T)
get(.T)[, c(newColumnsToAdd) := lapply(.SD, FunctionToExecute), .SDcols=columnsUsingPerTable[[.T]], by=byCols ] )
# Take a look at the tables now:
DT1
DT2
DT3
关于r - 数据表元编程,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/15790743/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!