gpt4 book ai didi

machine-learning - 运行时错误 : dimension out of range (expected to be in range of [-1, 0],但得到 1)

转载 作者:行者123 更新时间:2023-12-03 11:10:15 29 4
gpt4 key购买 nike

我使用的是 Pytorch Unet 模型,我将图像作为输入提供给该模型,同时我将标签作为输入图像掩码提供并在其上训练数据集。
我从其他地方获得的 Unet 模型,我使用交叉熵损失作为损失函数,但我得到了这个维度超出范围的错误,

RuntimeError                              
Traceback (most recent call last)
<ipython-input-358-fa0ef49a43ae> in <module>()
16 for epoch in range(0, num_epochs):
17 # train for one epoch
---> 18 curr_loss = train(train_loader, model, criterion, epoch, num_epochs)
19
20 # store best loss and save a model checkpoint

<ipython-input-356-1bd6c6c281fb> in train(train_loader, model, criterion, epoch, num_epochs)
16 # measure loss
17 print (outputs.size(),labels.size())
---> 18 loss = criterion(outputs, labels)
19 losses.update(loss.data[0], images.size(0))
20

/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py in _ _call__(self, *input, **kwargs)
323 for hook in self._forward_pre_hooks.values():
324 hook(self, input)
--> 325 result = self.forward(*input, **kwargs)
326 for hook in self._forward_hooks.values():
327 hook_result = hook(self, input, result)

<ipython-input-355-db66abcdb074> in forward(self, logits, targets)
9 probs_flat = probs.view(-1)
10 targets_flat = targets.view(-1)
---> 11 return self.crossEntropy_loss(probs_flat, targets_flat)

/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
323 for hook in self._forward_pre_hooks.values():
324 hook(self, input)
--> 325 result = self.forward(*input, **kwargs)
326 for hook in self._forward_hooks.values():
327 hook_result = hook(self, input, result)

/usr/local/lib/python3.5/dist-packages/torch/nn/modules/loss.py in f orward(self, input, target)
599 _assert_no_grad(target)
600 return F.cross_entropy(input, target, self.weight, self.size_average,
--> 601 self.ignore_index, self.reduce)
602
603

/usr/local/lib/python3.5/dist-packages/torch/nn/functional.py in cross_entropy(input, target, weight, size_average, ignore_index, reduce)
1138 >>> loss.backward()
1139 """
-> 1140 return nll_loss(log_softmax(input, 1), target, weight, size_average, ignore_index, reduce)
1141
1142

/usr/local/lib/python3.5/dist-packages/torch/nn/functional.py in log_softmax(input, dim, _stacklevel)
784 if dim is None:
785 dim = _get_softmax_dim('log_softmax', input.dim(), _stacklevel)
--> 786 return torch._C._nn.log_softmax(input, dim)
787
788

RuntimeError: dimension out of range (expected to be in range of [-1, 0], but got 1)
我的部分代码看起来像这样
class crossEntropy(nn.Module):
def __init__(self, weight = None, size_average = True):
super(crossEntropy, self).__init__()
self.crossEntropy_loss = nn.CrossEntropyLoss(weight, size_average)

def forward(self, logits, targets):
probs = F.sigmoid(logits)
probs_flat = probs.view(-1)
targets_flat = targets.view(-1)
return self.crossEntropy_loss(probs_flat, targets_flat)


class UNet(nn.Module):
def __init__(self, imsize):
super(UNet, self).__init__()
self.imsize = imsize

self.activation = F.relu

self.pool1 = nn.MaxPool2d(2)
self.pool2 = nn.MaxPool2d(2)
self.pool3 = nn.MaxPool2d(2)
self.pool4 = nn.MaxPool2d(2)
self.conv_block1_64 = UNetConvBlock(4, 64)
self.conv_block64_128 = UNetConvBlock(64, 128)
self.conv_block128_256 = UNetConvBlock(128, 256)
self.conv_block256_512 = UNetConvBlock(256, 512)
self.conv_block512_1024 = UNetConvBlock(512, 1024)

self.up_block1024_512 = UNetUpBlock(1024, 512)
self.up_block512_256 = UNetUpBlock(512, 256)
self.up_block256_128 = UNetUpBlock(256, 128)
self.up_block128_64 = UNetUpBlock(128, 64)

self.last = nn.Conv2d(64, 2, 1)


def forward(self, x):
block1 = self.conv_block1_64(x)
pool1 = self.pool1(block1)

block2 = self.conv_block64_128(pool1)
pool2 = self.pool2(block2)

block3 = self.conv_block128_256(pool2)
pool3 = self.pool3(block3)

block4 = self.conv_block256_512(pool3)
pool4 = self.pool4(block4)

block5 = self.conv_block512_1024(pool4)

up1 = self.up_block1024_512(block5, block4)

up2 = self.up_block512_256(up1, block3)

up3 = self.up_block256_128(up2, block2)

up4 = self.up_block128_64(up3, block1)

return F.log_softmax(self.last(up4))

最佳答案

根据您的代码:

probs_flat = probs.view(-1)
targets_flat = targets.view(-1)
return self.crossEntropy_loss(probs_flat, targets_flat)

你给 nn.CrossEntropyLoss 两个一维张量但根据 documentation ,它期望:
Input: (N,C) where C = number of classes
Target: (N) where each value is 0 <= targets[i] <= C-1
Output: scalar. If reduce is False, then (N) instead.

我相信这就是您遇到问题的原因。

关于machine-learning - 运行时错误 : dimension out of range (expected to be in range of [-1, 0],但得到 1),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48377214/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com