gpt4 book ai didi

r - 从 lme fit 中提取预测带

转载 作者:行者123 更新时间:2023-12-03 10:42:06 25 4
gpt4 key购买 nike

我有以下型号

x  <- rep(seq(0, 100, by=1), 10)
y <- 15 + 2*rnorm(1010, 10, 4)*x + rnorm(1010, 20, 100)
id <- NULL
for(i in 1:10){ id <- c(id, rep(i,101)) }
dtfr <- data.frame(x=x,y=y, id=id)
library(nlme)
with(dtfr, summary( lme(y~x, random=~1+x|id, na.action=na.omit)))
model.mx <- with(dtfr, (lme(y~x, random=~1+x|id, na.action=na.omit)))
pd <- predict( model.mx, newdata=data.frame(x=0:100), level=0)
with(dtfr, plot(x, y))
lines(0:100, predict(model.mx, newdata=data.frame(x=0:100), level=0), col="darkred", lwd=7)

enter image description here

predictlevel=0我可以绘制平均人口 react 。如何从整个人群的 nlme 对象中提取和绘制 95% 置信区间/预测带?

最佳答案

警告:阅读 this thread on r-sig-mixed models在这样做之前。解释结果预测带时要非常小心。

来自 r-sig-mixed models FAQ调整到你的例子:

set.seed(42)
x <- rep(0:100,10)
y <- 15 + 2*rnorm(1010,10,4)*x + rnorm(1010,20,100)
id<-rep(1:10,each=101)

dtfr <- data.frame(x=x ,y=y, id=id)

library(nlme)

model.mx <- lme(y~x,random=~1+x|id,data=dtfr)

#create data.frame with new values for predictors
#more than one predictor is possible
new.dat <- data.frame(x=0:100)
#predict response
new.dat$pred <- predict(model.mx, newdata=new.dat,level=0)

#create design matrix
Designmat <- model.matrix(eval(eval(model.mx$call$fixed)[-2]), new.dat[-ncol(new.dat)])

#compute standard error for predictions
predvar <- diag(Designmat %*% model.mx$varFix %*% t(Designmat))
new.dat$SE <- sqrt(predvar)
new.dat$SE2 <- sqrt(predvar+model.mx$sigma^2)

library(ggplot2)
p1 <- ggplot(new.dat,aes(x=x,y=pred)) +
geom_line() +
geom_ribbon(aes(ymin=pred-2*SE2,ymax=pred+2*SE2),alpha=0.2,fill="red") +
geom_ribbon(aes(ymin=pred-2*SE,ymax=pred+2*SE),alpha=0.2,fill="blue") +
geom_point(data=dtfr,aes(x=x,y=y)) +
scale_y_continuous("y")
p1

plot

关于r - 从 lme fit 中提取预测带,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/14358811/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com