gpt4 book ai didi

r - 熔化成两个可变列

转载 作者:行者123 更新时间:2023-12-03 10:27:49 24 4
gpt4 key购买 nike

我在数据框中有以下变量:

[1] "Type"   "I.alt"  "idx06"  "idx07"  "idx08" "farve1" "farve2"

如果我做:
dm <- melt(d, id=c("Type","I.alt"))

我得到这些变量:
"Type"     "I.alt"    "variable" "value"   

其中“idx06”、“idx07”、“idx08”、“farve1”、“farve2”用“variable”表示。

但我真正想要的是这样的:
"Type"     "I.alt"    "variable" "value" "variable2" "value2"

其中“farve1”和“farve2”分别用 variable2 和 value2 表示。

我想这样做的原因是,如果值下降,我想要线条颜色为绿色,如果值上升则为红色。
编辑:Shane 展示了如何通过合并的两个熔体来 reshape 数据。但我的策略似乎从一开始就构思错误——一句话就是错的。请参阅我对 Shane 解决方案的评论。
ggplot(dm, aes(x=variable,y=value,group=Type,col=variable2, label=Type,size=I.alt))+
geom_line()+
geom_text(data=subset(dm, variable=="idx08"),hjust=-0.2, size=2.5)+
theme_bw()+
scale_x_discrete(expand=c(0,1))+
opts(legend.position="none")

我想我需要类型转换熔化的框架 - 但我无法弄清楚。
数据:
d <- structure(list(Type = structure(c(8L, 21L, 23L, 20L, 6L, 14L, 
3L, 24L, 2L, 28L, 32L, 22L, 15L, 29L, 1L, 17L, 18L, 33L, 25L,
13L, 30L, 11L, 26L, 9L, 12L, 4L, 5L, 27L, 16L, 19L, 10L, 31L,
7L), .Label = c("Alvorligere vold", "Andre strafferetlige særlove",
"Andre tyverier", "Bedrageri", "Brandstiftelse", "Butikstyverier m.v.",
"Dokumentfalsk", "Færdselslovovertræd. i øvrigt", "Færdselsuheld med spiritus",
"Falsk forklaring i øvrigt", "Forbr. mod off. myndighed m.v.",
"Freds- og ærekrænkelser", "Hæleri", "Hærværk", "Indbrud i bank, forretn. m.v.",
"Indbrud i fritidshuse, garager mv", "Indbrud i villaer, lejligheder mv",
"Love vedr. forsvaret og lign.", "Love vedr. spil, bev., næring",
"Lov om euforiserende stoffer", "Mangler ved køretøj", "Røveri",
"Simpel vold", "Spiritus- og promillekørsel", "Trusler", "Tyv./brugstyv. af andet",
"Tyv./brugstyv. af cykel", "Tyv./brugstyv. af indr. køretøj",
"Tyv/brugstyv. af knallert", "Tyveri fra bil, båd m.v.", "Ulovlig omgang med hittegods",
"Våbenloven", "Vold o.l. mod off. myndighed"), class = "factor"),
I.alt = c(16137L, 9519L, 5930L, 5502L, 4887L, 3582L, 3101L,
1738L, 1660L, 1649L, 1551L, 1412L, 1338L, 1164L, 1154L, 1057L,
931L, 907L, 857L, 724L, 681L, 644L, 641L, 505L, 450L, 419L,
405L, 328L, 324L, 324L, 320L, 281L, 262L), idx06 = c(1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), idx07 = c(0.972675591417568,
0.766866371450899, 0.931743805516597, 0.813047711781889,
0.88728323699422, 0.96420233463035, 0.855743544078362, 1.03710247349823,
0.751470588235294, 0.90443686006826, 0.808403361344538, 0.902834008097166,
0.718181818181818, 0.904555314533623, 1.02717391304348, 0.68957345971564,
1.10324483775811, 0.93030303030303, 0.805309734513274, 0.843003412969283,
0.74914089347079, 0.824786324786325, 1.04060913705584, 1.09150326797386,
0.977941176470588, 0.892405063291139, 0.966666666666667,
0.828125, 0.696, 0.813559322033898, 0.697841726618705, 0.88235294117647,
0.62280701754386), idx08 = c(0.986612873647533, 0.712685595207085,
0.840579710144927, 0.865628042843233, 0.93757225433526, 0.823346303501945,
0.905609973285841, 1.03356890459364, 0.689705882352941, 0.909556313993174,
0.798319327731092, 0.955465587044534, 0.714545454545455,
0.620390455531453, 1.10869565217391, 0.815165876777251, 0.64306784660767,
0.818181818181818, 0.722713864306785, 0.627986348122867,
0.59106529209622, 0.927350427350427, 1.21319796954315, 1.20915032679739,
1.33088235294118, 0.759493670886076, 1.40833333333333, 0.734375,
0.896, 0.932203389830508, 0.60431654676259, 0.872549019607843,
0.675438596491228), farve1 = c("green", "green", "green",
"green", "green", "green", "green", "red", "green", "green",
"green", "green", "green", "green", "red", "green", "red",
"green", "green", "green", "green", "green", "red", "red",
"green", "green", "green", "green", "green", "green", "green",
"green", "green"), farve2 = c("red", "green", "green", "red",
"red", "green", "red", "green", "green", "red", "green",
"red", "green", "green", "red", "red", "green", "green",
"green", "green", "green", "red", "red", "red", "red", "green",
"red", "green", "red", "red", "green", "green", "red")), .Names = c("Type",
"I.alt", "idx06", "idx07", "idx08", "farve1", "farve2"), class = "data.frame", row.names = c(NA, -33L))

最佳答案

这并不能回答您关于 Actor 阵容的问题,但您当然可以进行子集化并进行两次融合,然后进行合并:

dm1 <- melt(d[,c("Type","I.alt","idx06","idx07","idx08")], id=c("Type","I.alt"))
dm2 <- melt(d[,c("Type","I.alt","farve1","farve2")], id=c("Type","I.alt"))
colnames(dm2) <- c("Type", "I.alt", "variable2", "value2")
dm <- merge(dm1, dm2)

或者,等效地,做一次融化(就像你现在正在做的那样)然后将融化的数据帧子集两次( idx <- variable %in% c("idx06","idx07","idx08" )作为一个和 !idx作为另一个)并合并该输出。

无论哪种方式,你都会得到你想要的:
> head(dm)
Type I.alt variable value variable2 value2
1 Alvorligere vold 1154 idx08 1.108696 farve1 red
2 Alvorligere vold 1154 idx08 1.108696 farve2 red
3 Alvorligere vold 1154 idx07 1.027174 farve1 red
4 Alvorligere vold 1154 idx07 1.027174 farve2 red
5 Alvorligere vold 1154 idx06 1.000000 farve1 red
6 Alvorligere vold 1154 idx06 1.000000 farve2 red

关于r - 熔化成两个可变列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/1544907/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com