- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
考虑以下程序:
for i=1 to 10000000 do
z <- z*z + c
z
和
c
是复数。
gcc -O2
生成的代码了,我猜想还有很多改进的余地,但是我不擅长亲自编写最佳的x86汇编程序,因此我在这里寻求帮助。
最佳答案
您本身不需要在汇编程序中执行此操作-您可以通过内部函数使用SSE来实现高效的实现,尤其是如果您可以使用单精度的话。
temp.re = z.re * z.re - z.im * z.im;
temp.im = 2.0 * z.re * z.im;
z.re = temp.re + c.re;
z.im = temp.im + c.im;
如果适本地对输入 vector 进行混洗,则可以在一条指令(
_mm_mul_ps
)中获得所有乘法,而在第二条指令(
_mm_hadd_ps
)中获得加法。
static Complex loop_simd(const Complex z0, const Complex c, const int n)
{
__m128 vz = _mm_set_ps(z0.im, z0.re, z0.im, z0.re);
const __m128 vc = _mm_set_ps(0.0f, 0.0f, c.im, c.re);
const __m128 vs = _mm_set_ps(0.0f, 0.0f, -0.0f, 0.0f);
Complex z[2];
int i;
for (i = 0; i < n; ++i)
{
__m128 vtemp;
vtemp = _mm_shuffle_ps(vz, vz, 0x16); // temp = { z.re, z.im, z.im, z.re }
vtemp = _mm_xor_ps(vtemp, vs); // temp = { z.re, -z.im, z.im, z.re }
vtemp = _mm_mul_ps(vtemp, vz); // temp = { z.re * z.re, - z.im * z.im, z.re * z.im, z.im * z.re }
vtemp = _mm_hadd_ps(vtemp, vtemp); // temp = { z.re * z.re - z.im * z.im, 2 * z.re * z.im, ... }
vz = _mm_add_ps(vtemp, vc); // temp = { z.re * z.re - z.im * z.im + c.re, 2 * z.re * z.im + c.im, ... }
}
_mm_storeu_ps(&z[0].re, vz);
return z[0];
}
请注意,内部循环仅是6条SSE指令(实际上应该是5条)+循环本身的一些内务处理:
L4:
movaps %xmm0, %xmm1
shufps $22, %xmm0, %xmm1
xorps %xmm3, %xmm1
mulps %xmm1, %xmm0
haddps %xmm0, %xmm0
addps %xmm2, %xmm0
incl %eax
cmpl %edi, %eax
jne L4
L2:
关于c - x86汇编中用于Mandelbrot循环的高效复杂算术,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/10329903/
我现在在 Mandelbrot 集的 DirectX 11 版本上工作了几天。到目前为止,我所做的是创建一个带有纹理的四边形。我可以使用 Pixel Shader 为点着色,但由于某种原因,Pixel
我在 Javascript 上编写了一个程序,用于创建 mandelbrot 分形,并将其绘制在 html Canvas 中。我的渲染方法是每行迭代,从 0 到 500 像素,然后简单地执行一个循环,
我的类(class)布置了一项作业,要求我编写一个程序来绘制曼德尔布洛特图形。 我们必须基本上让程序绘制结果的位图。 问题是,我的 CalcMBF 函数只输出 2 作为 Mandelbrot 数。 我
我认为问题在于我如何将笛卡尔坐标转换为复数,但我现在知道如何操作了。你能解释一下我应该如何转换吗?这是我尝试过的: double c_Im = (y + (maxIm - minIm)) / heig
我是 C++ 编程的新手,为了改进,我正在尝试制作一个 mandelbrot set consol 应用程序。我已经让它几乎完美地工作:图像生成,我可以放大/缩小,并且非常容易地四处移动。不过,我遇到
我想使用 Java 生成 Mandelbrot 集的 PNG 照片,输出应该可以在 Google 图片搜索中轻松找到。 该集合定义为以下序列: z_n+1 = z_n^2 + c 其中 c 和 z 是
我用 Java 编写了一个 Mandelbrot 集分形,并包含了在一定程度上平移和放大分形的功能。唯一的问题是,当我平移图像并尝试放大时,它看起来好像试图放大中心并平移一点。平移和缩放并不是真正的平
我用 python 编写了 Mandelbrot 集,但它看起来很奇怪,所以我搜索了平滑的颜色。我已经使用对数和线性插值编写了一个平滑的着色函数,但无论我尝试什么,我都无法得到我想要的: self.p
我编写了一个简单的片段着色器来渲染 mandelbrot 集。我正在使用 c 语言和使用 glsl 的 opengl 执行此操作。 #version 330 core in vec2 fCoord;
我正在尝试制作一个程序,通过制作一个 .PPM 文件来生成标准 Mandelbrot 集的图像。该程序没有生成有效的 PPM 文件,我不知道为什么。 这是我的代码: #include #includ
我知道已经回答了很多关于此的问题。然而,我的略有不同。每当我们实现我所理解的平滑着色算法时。 mu = 1 + n + math.log2(math.log2(z)) / math.log2(2)
mandelbrot 集包含 mandelbrot 迭代有界的点,迭代点永远不会“逃逸”。 让我们将边界定义为点,其中迭代点在 N 次迭代后逃逸(逃逸我的意思是与原点的距离变得大于 2)。 是否可以保
我一直在做 Mandelbrot 集并尝试缩放,但缩放模式变得非常麻烦。当我缩放时,它会完美缩放,但图像尺寸会缩小到原始尺寸的一半。下次我再次缩放时,图片尺寸会增加并尝试跳过查看窗口。代码在 c++/
我目前正在编写一个程序来生成非常巨大的(65536x65536 像素及以上)Mandelbrot 图像,并且我想设计一个光谱和着色方案来使它们公平。 wikipedia featured mandel
谁能解释一下扰动是如何描述的in this paper加速渲染 Mandelbrot 集? 我知道如何使用对每个像素执行多次迭代的传统方法来渲染 Mandelbrot 集,但我不太明白那篇论文中描述的
这是我尝试使用 Pygame 模块在 Python 3.5 中编写 Mandelbrot 集。 import math, pygame pygame.init() def mapMandelbrot(
我正在使用 C 编写以下代码。到目前为止,它一直在工作,并且已缩放到正确的级别等,但是我正在努力让颜色按我想要的方式工作。理想情况下,无论颜色如何,我都希望得到这样的结果: 但是我的程序如下所示,目前
我可以生成从 minReal 到 maxReal 以及从 minImaginary 到 maxImaginary 的 Mandelbrot 集的 400x400 图像。所以, makeMandel(m
我正在编写绘制 Mandelbrot 集版本的代码。当它运行时,它接受两个输入 a 和 b,并将其转换为一个复数(例如 complex(a,b))。然后它绘制一个 Mandelbrot 集,其中 z
尝试使用与我在使用 TBB(线程构建块)运行时使用的代码相同的代码(有点)。 我对 OpenCL 没有太多经验,但我认为大部分主要代码是正确的。我相信错误在 .cl文件,它在那里进行数学运算。 这是我
我是一名优秀的程序员,十分优秀!