作者热门文章
- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 maclaurin 系列来实现可扩展的 CNN。基本思想是可以将第一个输入节点分解为具有不同阶数和系数的多个节点。将单个节点分解为多个节点可以生成与麦克劳林级数不同的非线性线连接。谁能给我一个关于如何扩展的可能想法 CNN
与麦克劳林级数非线性展开?任何想法?
我不太明白如何将输入节点分解为多个具有不同非线性线连接的节点,这些节点由麦克劳林级数生成。据我所知,麦克劳林级数是一个近似函数,但分解节点在实现方面对我来说不是很直观。如何在python中实现一个分解输入节点到多个节点?如何轻松实现这一目标?任何的想法?
我的尝试 :
import tensorflow as tf
import numpy as np
import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten
from keras.datasets import cifar10
from keras.utils import to_categorical
(train_imgs, train_label), (test_imgs, test_label)= cifar10.load_data()
output_class = np.unique(train_label)
n_class = len(output_class)
nrows_tr, ncols_tr, ndims_tr = train_imgs.shape[1:]
nrows_ts, ncols_ts, ndims_ts = test_imgs.shape[1:]
train_data = train_imgs.reshape(train_imgs.shape[0], nrows_tr, ncols_tr, ndims_tr)
test_data = test_imgs.reshape(test_imgs.shape[0], nrows_ts, ncols_ts, ndims_ts)
input_shape = (nrows_tr, ncols_tr, ndims_tr)
train_data = train_data.astype('float32')
trast_data = test_data.astype('float32')
train_data //= 255
test_data //= 255
train_label_one_hot = to_categorical(train_label)
test_label_one_hot = to_categorical(test_label)
def pown(x,n):
return(x**n)
def expandable_cnn(input_shape, output_shape, approx_order):
inputs=Input(shape=(input_shape))
x= Dense(input_shape)(inputs)
y= Dense(output_shape)(x)
model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(3,3), padding='same', activation="relu", input_shape=input_shape))
model.add(Conv2D(filters=32, kernel_size=(3,3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
for i in range(2, approx_order+1):
y=add([y, Dense(output_shape)(Activation(lambda x: pown(x, n=i))(x))])
model.add(Dense(n_class, activation='softmax')(y))
return model
最佳答案
有趣的问题。我已经实现了一个 Keras 模型,它按照您的描述计算泰勒展开:
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Input, Lambda
def taylor_expansion_network(input_dim, max_pow):
x = Input((input_dim,))
# 1. Raise input x_i to power p_i for each i in [0, max_pow].
def raise_power(x, max_pow):
x_ = x[..., None] # Shape=(batch_size, input_dim, 1)
x_ = tf.tile(x_, multiples=[1, 1, max_pow + 1]) # Shape=(batch_size, input_dim, max_pow+1)
pows = tf.range(0, max_pow + 1, dtype=tf.float32) # Shape=(max_pow+1,)
x_p = tf.pow(x_, pows) # Shape=(batch_size, input_dim, max_pow+1)
x_p_ = x_p[..., None] # Shape=(batch_size, input_dim, max_pow+1, 1)
return x_p_
x_p_ = Lambda(lambda x: raise_power(x, max_pow))(x)
# 2. Multiply by alpha coefficients
h = LocallyConnected2D(filters=1,
kernel_size=1, # This layer is computing a_i * x^{p_i} for each i in [0, max_pow]
use_bias=False)(x_p_) # Shape=(batch_size, input_dim, max_pow+1, 1)
# 3. Compute s_i for each i in [0, max_pow]
def cumulative_sum(h):
h = tf.squeeze(h, axis=-1) # Shape=(batch_size, input_dim, max_pow+1)
s = tf.cumsum(h, axis=-1) # s_i = sum_{j=0}^i h_j. Shape=(batch_size, input_dim, max_pow+1)
s_ = s[..., None] # Shape=(batch_size, input_dim, max_pow+1, 1)
return s_
s_ = Lambda(cumulative_sum)(h)
# 4. Compute sum w_i * s_i each i in [0, max_pow]
s_ = LocallyConnected2D(filters=1, # This layer is computing w_i * s_i for each i in [0, max_pow]
kernel_size=1,
use_bias=False)(s_) # Shape=(batch_size, input_dim, max_pow+1)
y = Lambda(lambda s_: tf.reduce_sum(tf.squeeze(s_, axis=-1), axis=-1))(s_) # Shape=(batch_size, input_dim)
# Return Taylor expansion model
model = Model(inputs=x, outputs=y)
model.summary()
return model
(batch_size, input_dim=512)
的扁平张量的每个元素。来自卷积网络。
expandable_cnn
可以修改以集成上面定义的模型:
def expandable_cnn(input_shape, nclass, approx_order):
inputs = Input(shape=(input_shape))
h = inputs
h = Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu', input_shape=input_shape)(h)
h = Conv2D(filters=32, kernel_size=(3, 3), activation='relu')(h)
h = MaxPooling2D(pool_size=(2, 2))(h)
h = Dropout(0.25)(h)
h = Flatten()(h)
h = Dense(512, activation='relu')(h)
h = Dropout(0.5)(h)
taylor_model = taylor_expansion_network(input_dim=512, max_pow=approx_order)
h = taylor_model(h)
h = Activation('relu')(h)
print(h.shape)
h = Dense(nclass, activation='softmax')(h)
model = Model(inputs=inputs, outputs=h)
return model
关于python - 如何在keras中实现麦克劳林系列?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60982666/
我是一名优秀的程序员,十分优秀!