- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
预读
我在 SO 上浏览了一些 Material :
data.tables
在函数中。
R
表达式作为输入并在
data.table
的上下文中计算它们(在
i
和
j
部分)。引用的答案告诉我,我必须使用一些
get/eval/substitute
如果我的输入变得比单列更复杂(在这种情况下,我可以接受
..string
或
with = FALSE
方法 [1])。
eval
方法:
library(data.table)
iris <- copy(iris)
setDT(iris)
my_fun <- function(my_i, my_j, option_sel = 1, my_data = iris, by = NULL) {
switch(option_sel,
{
## option 1 - base R deparse
my_data[eval(parse(text = deparse(substitute(my_i)))),
eval(parse(text = deparse(substitute(my_j)))),
by]
},
{
## option 2 - base R even shorter
my_data[eval(substitute(my_i)),
eval(substitute(my_j)),
by]
},
{
## option 3 - rlang
my_data[rlang::eval_tidy(rlang::enexpr(my_i)),
rlang::eval_tidy(rlang::enexpr(my_j), data = .SD),
by]
},
{
## option 4 - if passing only simple column name strings
## we can use `with` (in j only)
my_data[,
my_j, with = FALSE,
by]
},
{
## option 5 - if passing only simple column name strings
## we can use ..syntax (in 'j' only)
my_data[,
..my_j]
# , by] ## would give a strange error
},
{
## option 6 - if passing only simple column name strings
## we can use `get`
my_data[,
setNames(.(get(my_j)), my_j),
by]
}
)
}
## added the unnecessary NULL to enforce same format
## did not want to make complicated ifs for by in the func
## but by is needed for meaningful benchmarks later
expected <- iris[Species == "setosa", sum(Sepal.Length), NULL]
sapply(1:3, function(i)
isTRUE(all.equal(expected,
my_fun(Species == "setosa", sum(Sepal.Length), i))))
# [1] TRUE TRUE TRUE
expected <- iris[, .(Sepal.Length), NULL]
sapply(4:6, function(i)
isTRUE(all.equal(expected,
my_fun(my_j = "Sepal.Length", option_sel = i))))
# [1] TRUE TRUE TRUE
data.table
中获利最多,我必须使用内部优化器可以分析和优化的代码 [2]。因此,选项 1-3(4-6 仅在此处是为了完整性且缺乏完全灵活性)中的哪一个与 data.table
配合使用“最佳”。 ,即哪些可以进行内部优化以充分利用 data.table
?我的快速基准测试表明 rlang
选项似乎是最快的。 .SD
作为 j
中的数据参数部分,但不在 i
中部分。这是因为范围界定很清楚。但是为什么tidy_eval
“查看” i
中的列名但不在 j
? library(dplyr)
size <- c(1e6, 1e7, 1e8)
grp_prop <- c(1e-6, 1e-4)
make_bench_dat <- function(size, grp_prop) {
data.table(x = seq_len(size),
g = sample(ceiling(size * grp_prop), size, grp_prop < 1))
}
res <- bench::press(
size = size,
grp_prop = grp_prop,
{
bench_dat <- make_bench_dat(size, grp_prop)
bench::mark(
deparse = my_fun(TRUE, max(x), 1, bench_dat, by = "g"),
substitute = my_fun(TRUE, max(x), 2, bench_dat, by = "g"),
rlang = my_fun(TRUE, max(x), 3, bench_dat, by = "g"),
relative = TRUE)
}
)
summary(res) %>% select(expression, size, grp_prop, min, median)
# # A tibble: 18 x 5
# expression size grp_prop min median
# <bch:expr> <dbl> <dbl> <bch:tm> <bch:tm>
# 1 deparse 1000000 0.000001 22.73ms 24.36ms
# 2 substitute 1000000 0.000001 22.56ms 25.3ms
# 3 rlang 1000000 0.000001 8.09ms 9.05ms
# 4 deparse 10000000 0.000001 274.24ms 308.72ms
# 5 substitute 10000000 0.000001 276.73ms 276.99ms
# 6 rlang 10000000 0.000001 114.52ms 119.21ms
# 7 deparse 100000000 0.000001 3.79s 3.79s
# 8 substitute 100000000 0.000001 3.92s 3.92s
# 9 rlang 100000000 0.000001 3.12s 3.12s
# 10 deparse 1000000 0.0001 29.57ms 36.25ms
# 11 substitute 1000000 0.0001 37.22ms 41.56ms
# 12 rlang 1000000 0.0001 19.3ms 24.07ms
# 13 deparse 10000000 0.0001 386.13ms 396.84ms
# 14 substitute 10000000 0.0001 330.22ms 332.42ms
# 15 rlang 10000000 0.0001 270.54ms 274.35ms
# 16 deparse 100000000 0.0001 4.51s 4.51s
# 17 substitute 100000000 0.0001 4.1s 4.1s
# 18 rlang 100000000 0.0001 2.87s 2.87s
with = FALSE
或
..columnName
然而只在
j
中有效部分。
purrr::map
后,我获得了显着的性能提升时,我了解到这是一种艰难的方式。来自
base::lapply
.
最佳答案
不需要花哨的工具,只需使用基本的 R 元编程功能。
my_fun2 = function(my_i, my_j, by, my_data) {
dtq = substitute(
my_data[.i, .j, .by],
list(.i=substitute(my_i), .j=substitute(my_j), .by=substitute(by))
)
print(dtq)
eval(dtq)
}
my_fun2(Species == "setosa", sum(Sepal.Length), my_data=as.data.table(iris))
my_fun2(my_j = "Sepal.Length", my_data=as.data.table(iris))
[
一样。用手打电话。
env
var 替代将在内部为您处理
my_fun3 = function(my_i, my_j, by, my_data) {
my_data[.i, .j, .by, env=list(.i=substitute(my_i), .j=substitute(my_j), .by=substitute(by)), verbose=TRUE]
}
my_fun3(Species == "setosa", sum(Sepal.Length), my_data=as.data.table(iris))
#Argument 'j' after substitute: sum(Sepal.Length)
#Argument 'i' after substitute: Species == "setosa"
#...
my_fun3(my_j = "Sepal.Length", my_data=as.data.table(iris))
#Argument 'j' after substitute: Sepal.Length
#...
关于r - 将表达式传递给函数以在 data.table 中进行评估以允许内部优化,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62040136/
C语言sscanf()函数:从字符串中读取指定格式的数据 头文件: ?
最近,我有一个关于工作预评估的问题,即使查询了每个功能的工作原理,我也不知道如何解决。这是一个伪代码。 下面是一个名为foo()的函数,该函数将被传递一个值并返回一个值。如果将以下值传递给foo函数,
CStr 函数 返回表达式,该表达式已被转换为 String 子类型的 Variant。 CStr(expression) expression 参数是任意有效的表达式。 说明 通常,可以
CSng 函数 返回表达式,该表达式已被转换为 Single 子类型的 Variant。 CSng(expression) expression 参数是任意有效的表达式。 说明 通常,可
CreateObject 函数 创建并返回对 Automation 对象的引用。 CreateObject(servername.typename [, location]) 参数 serv
Cos 函数 返回某个角的余弦值。 Cos(number) number 参数可以是任何将某个角表示为弧度的有效数值表达式。 说明 Cos 函数取某个角并返回直角三角形两边的比值。此比值是
CLng 函数 返回表达式,此表达式已被转换为 Long 子类型的 Variant。 CLng(expression) expression 参数是任意有效的表达式。 说明 通常,您可以使
CInt 函数 返回表达式,此表达式已被转换为 Integer 子类型的 Variant。 CInt(expression) expression 参数是任意有效的表达式。 说明 通常,可
Chr 函数 返回与指定的 ANSI 字符代码相对应的字符。 Chr(charcode) charcode 参数是可以标识字符的数字。 说明 从 0 到 31 的数字表示标准的不可打印的
CDbl 函数 返回表达式,此表达式已被转换为 Double 子类型的 Variant。 CDbl(expression) expression 参数是任意有效的表达式。 说明 通常,您可
CDate 函数 返回表达式,此表达式已被转换为 Date 子类型的 Variant。 CDate(date) date 参数是任意有效的日期表达式。 说明 IsDate 函数用于判断 d
CCur 函数 返回表达式,此表达式已被转换为 Currency 子类型的 Variant。 CCur(expression) expression 参数是任意有效的表达式。 说明 通常,
CByte 函数 返回表达式,此表达式已被转换为 Byte 子类型的 Variant。 CByte(expression) expression 参数是任意有效的表达式。 说明 通常,可以
CBool 函数 返回表达式,此表达式已转换为 Boolean 子类型的 Variant。 CBool(expression) expression 是任意有效的表达式。 说明 如果 ex
Atn 函数 返回数值的反正切值。 Atn(number) number 参数可以是任意有效的数值表达式。 说明 Atn 函数计算直角三角形两个边的比值 (number) 并返回对应角的弧
Asc 函数 返回与字符串的第一个字母对应的 ANSI 字符代码。 Asc(string) string 参数是任意有效的字符串表达式。如果 string 参数未包含字符,则将发生运行时错误。
Array 函数 返回包含数组的 Variant。 Array(arglist) arglist 参数是赋给包含在 Variant 中的数组元素的值的列表(用逗号分隔)。如果没有指定此参数,则
Abs 函数 返回数字的绝对值。 Abs(number) number 参数可以是任意有效的数值表达式。如果 number 包含 Null,则返回 Null;如果是未初始化变量,则返回 0。
FormatPercent 函数 返回表达式,此表达式已被格式化为尾随有 % 符号的百分比(乘以 100 )。 FormatPercent(expression[,NumDigitsAfterD
FormatNumber 函数 返回表达式,此表达式已被格式化为数值。 FormatNumber( expression [,NumDigitsAfterDecimal [,Inc
我是一名优秀的程序员,十分优秀!