- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
[ 更新:尽管我已经接受了一个答案,但如果您有其他可视化想法(无论是 R 还是其他语言/程序),请添加另一个答案。分类数据分析的文本似乎没有过多地说明纵向数据的可视化,而纵向数据分析的文本似乎没有过多地说明将类别成员随时间推移的主题内变化可视化。对这个问题有更多的答案将使它成为一个更好的资源,可以解决标准引用文献中没有太多涵盖的问题。]
一位同事刚刚给了我一个纵向分类数据集供我查看,我正试图弄清楚如何在可视化中捕捉纵向方面。我在这里发帖,因为我想在 R 中执行此操作,但请告诉我是否也可以交叉发布到 Cross-Validated,因为通常不鼓励交叉发布。
快速背景:数据跟踪了参加学术咨询计划的学生每学期的学术地位。数据采用长格式,有五个变量:“id”、“cohort”、“term”、“standing”和“termGPA”。前两个标识学生和他们在咨询计划中的学期。后三个是记录学生学业成绩和 GPA 的术语。我使用 dput
在下面粘贴了一些示例数据.
我创建了一个马赛克图(见下文),按队列、排名和学期对学生进行分组。这显示了每个学期在每个学术水平类别中的学生比例。但这并没有捕捉到纵向方面——随着时间的推移跟踪个别学生的事实。我想跟踪具有特定学术地位的学生群体随着时间的推移所走的道路。
例如:在 2009 年秋季(“F09”)中获得“AP”(学术试用)的学生中,有多少比例在 future 的学期中仍然是 AP,哪些比例进入了其他类别(例如,GS,“良好的信誉”)?自进入咨询计划以来,在不同类别之间的移动方面是否存在差异?
我无法弄清楚如何在 R 图形中捕捉这个纵向方面。 vcd
包具有可视化分类数据的功能,但似乎没有解决纵向分类数据。是否有可视化纵向分类数据的“标准”方法? R 是否有为此设计的软件包?长格式适合这种类型的数据还是宽格式会更好?
我会很感激关于解决这个特定问题的建议,以及对文章、书籍等的建议,以了解更多关于可视化纵向分类数据的信息。
这是我用来制作马赛克图的代码。该代码使用下面列出的数据 dput
.
library(RColorBrewer)
# create a table object for plotting
df1.tab = table(df1$cohort, df1$term, df1$standing,
dnn=c("Cohort\nAcademic Standing", "Term", "Standing"))
# create a mosaic plot
plot(df1.tab, las=1, dir=c("h","v","h"),
col=brewer.pal(8,"Dark2"),
main="Fall 2009 and Fall 2010 Cohorts")
df1 =
structure(list(id = c(101L, 102L, 103L, 104L, 105L, 106L, 107L,
108L, 109L, 110L, 111L, 112L, 113L, 114L, 115L, 116L, 117L, 118L,
119L, 120L, 121L, 122L, 123L, 124L, 125L, 101L, 102L, 103L, 104L,
105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L, 113L, 114L, 115L,
116L, 117L, 118L, 119L, 120L, 121L, 122L, 123L, 124L, 125L, 101L,
102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L,
113L, 114L, 115L, 116L, 117L, 118L, 119L, 120L, 121L, 122L, 123L,
124L, 125L, 101L, 102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L,
110L, 111L, 112L, 113L, 114L, 115L, 116L, 117L, 118L, 119L, 120L,
121L, 122L, 123L, 124L, 125L, 101L, 102L, 103L, 104L, 105L, 106L,
107L, 108L, 109L, 110L, 111L, 112L, 113L, 114L, 115L, 116L, 117L,
118L, 119L, 120L, 121L, 122L, 123L, 124L, 125L, 101L, 102L, 103L,
104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L, 113L, 114L,
115L, 116L, 117L, 118L, 119L, 120L, 121L, 122L, 123L, 124L, 125L,
101L, 102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L,
112L, 113L, 114L, 115L, 116L, 117L, 118L, 119L, 120L, 121L, 122L,
123L, 124L, 125L), cohort = structure(c(1L, 1L, 1L, 1L, 2L, 1L,
1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L,
2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L,
1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L), .Label = c("F09", "F10"), class = c("ordered",
"factor")), term = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L), .Label = c("S09", "F09", "S10",
"F10", "S11", "F11", "S12"), class = c("ordered", "factor")),
standing = structure(c(2L, 4L, 1L, 4L, NA, 4L, 1L, NA, NA,
NA, NA, 2L, 2L, 1L, 4L, 4L, 1L, 3L, NA, NA, 4L, 3L, 1L, 4L,
NA, 2L, 1L, 3L, 3L, NA, 1L, 2L, NA, NA, NA, NA, 2L, 4L, 3L,
4L, 4L, 4L, 2L, NA, NA, 4L, 2L, 4L, 4L, NA, 3L, 4L, 6L, 6L,
1L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 4L, 6L, 4L, 4L, 1L, 4L, 1L,
2L, 4L, 3L, 1L, 4L, 1L, 6L, 1L, 6L, 6L, 7L, 4L, 4L, 2L, 2L,
4L, 2L, 6L, 4L, 6L, 7L, 4L, 2L, 4L, 1L, 2L, 4L, 6L, 6L, 4L,
2L, 2L, 3L, 6L, 6L, 7L, 4L, 4L, 3L, 4L, 4L, 6L, 2L, 1L, 6L,
6L, 4L, 2L, 1L, 7L, 2L, 4L, 6L, 6L, 4L, 4L, 3L, 6L, 4L, 6L,
2L, 4L, 4L, 6L, 4L, 4L, 6L, 3L, 2L, 6L, 6L, 4L, 2L, 6L, 3L,
4L, 4L, 6L, 6L, 4L, 4L, 5L, 6L, 4L, 6L, 4L, 4L, 4L, 5L, 4L,
4L, 6L, 6L, 2L, 6L, 6L, 4L, 3L, 6L, 6L, 4L, 4L, 6L, 6L, 4L,
4L), .Label = c("AP", "CP", "DQ", "GS", "DM", "NE", "WD"), class = "factor"),
termGPA = c(1.433, 1.925, 1, 1.68, NA, 1.579, 1.233, NA,
NA, NA, NA, 2.009, 1.675, 0, 1.5, 1.86, 0.5, 0.94, NA, NA,
1.777, 1.1, 1.133, 1.675, NA, 2, 1.25, 1.66, 0, NA, 1.525,
2.25, NA, NA, NA, NA, 1.66, 2.325, 0, 2.308, 1.6, 1.825,
2.33, NA, NA, 2.65, 2.65, 2.85, 3.233, NA, 1.25, 1.575, NA,
NA, 1, 2.385, 3.133, 0, 0, 1.729, 1.075, 0, 4, NA, 2.74,
0, 1.369, 2.53, 0, 2.65, 2.75, 0, 0.333, 3.367, 1, NA, 0.1,
NA, NA, 1, 2.2, 2.18, 2.31, 1.75, 3.073, 0.7, NA, 1.425,
NA, 2.74, 2.9, 0.692, 2, 0.75, 1.675, 2.4, NA, NA, 3.829,
2.33, 2.3, 1.5, NA, NA, NA, 2.69, 1.52, 0.838, 2.35, 1.55,
NA, 1.35, 0.66, NA, NA, 1.35, 1.9, 1.04, NA, 1.464, 2.94,
NA, NA, 3.72, 2.867, 1.467, NA, 3.133, NA, 1, 2.458, 1.214,
NA, 3.325, 2.315, NA, 1, 2.233, NA, NA, 2.567, 1, NA, 0,
3.325, 2.077, NA, NA, 3.85, 2.718, 1.385, NA, 2.333, NA,
2.675, 1.267, 1.6, 1.388, 3.433, 0.838, NA, NA, 0, NA, NA,
2.6, 0, NA, NA, 1, 2.825, NA, NA, 3.838, 2.883)), .Names = c("id",
"cohort", "term", "standing", "termGPA"), row.names = c("101.F09.s09",
"102.F09.s09", "103.F09.s09", "104.F09.s09", "105.F10.s09", "106.F09.s09",
"107.F09.s09", "108.F10.s09", "109.F10.s09", "110.F10.s09", "111.F10.s09",
"112.F09.s09", "113.F09.s09", "114.F09.s09", "115.F09.s09", "116.F09.s09",
"117.F09.s09", "118.F09.s09", "119.F10.s09", "120.F10.s09", "121.F09.s09",
"122.F09.s09", "123.F09.s09", "124.F09.s09", "125.F10.s09", "101.F09.f09",
"102.F09.f09", "103.F09.f09", "104.F09.f09", "105.F10.f09", "106.F09.f09",
"107.F09.f09", "108.F10.f09", "109.F10.f09", "110.F10.f09", "111.F10.f09",
"112.F09.f09", "113.F09.f09", "114.F09.f09", "115.F09.f09", "116.F09.f09",
"117.F09.f09", "118.F09.f09", "119.F10.f09", "120.F10.f09", "121.F09.f09",
"122.F09.f09", "123.F09.f09", "124.F09.f09", "125.F10.f09", "101.F09.s10",
"102.F09.s10", "103.F09.s10", "104.F09.s10", "105.F10.s10", "106.F09.s10",
"107.F09.s10", "108.F10.s10", "109.F10.s10", "110.F10.s10", "111.F10.s10",
"112.F09.s10", "113.F09.s10", "114.F09.s10", "115.F09.s10", "116.F09.s10",
"117.F09.s10", "118.F09.s10", "119.F10.s10", "120.F10.s10", "121.F09.s10",
"122.F09.s10", "123.F09.s10", "124.F09.s10", "125.F10.s10", "101.F09.f10",
"102.F09.f10", "103.F09.f10", "104.F09.f10", "105.F10.f10", "106.F09.f10",
"107.F09.f10", "108.F10.f10", "109.F10.f10", "110.F10.f10", "111.F10.f10",
"112.F09.f10", "113.F09.f10", "114.F09.f10", "115.F09.f10", "116.F09.f10",
"117.F09.f10", "118.F09.f10", "119.F10.f10", "120.F10.f10", "121.F09.f10",
"122.F09.f10", "123.F09.f10", "124.F09.f10", "125.F10.f10", "101.F09.s11",
"102.F09.s11", "103.F09.s11", "104.F09.s11", "105.F10.s11", "106.F09.s11",
"107.F09.s11", "108.F10.s11", "109.F10.s11", "110.F10.s11", "111.F10.s11",
"112.F09.s11", "113.F09.s11", "114.F09.s11", "115.F09.s11", "116.F09.s11",
"117.F09.s11", "118.F09.s11", "119.F10.s11", "120.F10.s11", "121.F09.s11",
"122.F09.s11", "123.F09.s11", "124.F09.s11", "125.F10.s11", "101.F09.f11",
"102.F09.f11", "103.F09.f11", "104.F09.f11", "105.F10.f11", "106.F09.f11",
"107.F09.f11", "108.F10.f11", "109.F10.f11", "110.F10.f11", "111.F10.f11",
"112.F09.f11", "113.F09.f11", "114.F09.f11", "115.F09.f11", "116.F09.f11",
"117.F09.f11", "118.F09.f11", "119.F10.f11", "120.F10.f11", "121.F09.f11",
"122.F09.f11", "123.F09.f11", "124.F09.f11", "125.F10.f11", "101.F09.s12",
"102.F09.s12", "103.F09.s12", "104.F09.s12", "105.F10.s12", "106.F09.s12",
"107.F09.s12", "108.F10.s12", "109.F10.s12", "110.F10.s12", "111.F10.s12",
"112.F09.s12", "113.F09.s12", "114.F09.s12", "115.F09.s12", "116.F09.s12",
"117.F09.s12", "118.F09.s12", "119.F10.s12", "120.F10.s12", "121.F09.s12",
"122.F09.s12", "123.F09.s12", "124.F09.s12", "125.F10.s12"), reshapeLong = structure(list(
varying = list(c("s09as", "f09as", "s10as", "f10as", "s11as",
"f11as", "s12as"), c("s09termGPA", "f09termGPA", "s10termGPA",
"f10termGPA", "s11termGPA", "f11termGPA", "s12termGPA")),
v.names = c("standing", "termGPA"), idvar = c("id", "cohort"
), timevar = "term"), .Names = c("varying", "v.names", "idvar",
"timevar")), class = "data.frame")
最佳答案
这里有一些绘制数据的想法。我使用了 ggplot2,并且在某些地方重新格式化了数据。
图1
我使用堆叠条形图来模拟您的马赛克图并解决对齐问题。
图2
每个学生的数据点由一条灰线连接,让人联想到平行坐标图。为点着色显示分类地位。在 y 轴上使用 GPA 有助于分散点以减少过度绘制,并显示站立和 GPA 的相关性。一个主要问题是许多有效的standing
数据点丢失是因为它们缺少匹配的 termGPA 值。
图 3
在这里,我创建了一个名为 initial_standing 的新变量用于分面。每个面板包含在 cohort 和 initial_standing 中都匹配的学生。将 id 绘制为文本会使这个数字有点困惑,但在某些情况下可能很有用。
图 4
这个图就像一个热图,其中每一行都是一个学生。我控制了id
的顺序轴强制 initial_standing 和同类群组保持在一起。如果您有更多行,您可能需要考虑按某种类型的聚类对行进行排序。
library(ggplot2)
# Create new data frame for determining initial standing.
standing_data = data.frame(id=unique(df1$id), initial_standing=NA, cohort=NA)
for (i in 1:nrow(standing_data)) {
id = standing_data$id[i]
subdat = df1[df1$id == id, ]
subdat = subdat[complete.cases(subdat), ]
initial_standing = subdat$standing[which.min(subdat$term)]
standing_data[i, "initial_standing"] = as.character(initial_standing)
standing_data[i, "cohort"] = as.character(subdat$cohort[1])
}
standing_data$cohort = factor(standing_data$cohort, levels=levels(df1$cohort))
standing_data$initial_standing = factor(standing_data$initial_standing,
levels=levels(df1$standing))
# Add the new column (initial_standing) to df1.
df1 = merge(df1, standing_data[, c("id", "initial_standing")], by="id")
# Remove rows where standing is missing. Make some plots tidier.
df1 = df1[!is.na(df1$standing), ]
# Create id factor, controlling the sort order of the levels.
id_order = order(standing_data$initial_standing, standing_data$cohort)
df1$id = factor(df1$id, levels=as.character(standing_data$id)[id_order])
p1 = ggplot(df1, aes(x=term, fill=standing)) +
geom_bar(position="fill", colour="grey20", size=0.5, width=1.0) +
facet_grid(cohort ~ .) +
scale_fill_brewer(palette="Set1")
p2 = ggplot(df1, aes(x=term, y=termGPA, group=id)) +
geom_line(colour="grey70") +
geom_point(aes(colour=standing), size=4) +
facet_grid(cohort ~ .) +
scale_colour_brewer(palette="Set1")
p3 = ggplot(df1, aes(x=term, y=termGPA, group=id)) +
geom_line(colour="grey70") +
geom_point(aes(colour=standing), size=4) +
geom_text(aes(label=id), hjust=-0.30, size=3) +
facet_grid(initial_standing ~ cohort) +
scale_colour_brewer(palette="Set1")
p4 = ggplot(df1, aes(x=term, y=id, fill=standing)) +
geom_tile(colour="grey20") +
facet_grid(initial_standing ~ ., space="free_y", scales="free_y") +
scale_fill_brewer(palette="Set1") +
opts(panel.grid.major=theme_blank()) +
opts(panel.grid.minor=theme_blank())
ggsave("plot_1.png", p1, width=10, height=6.25, dpi=80)
ggsave("plot_2.png", p2, width=10, height=6.25, dpi=80)
ggsave("plot_3.png", p3, width=10, height=6.25, dpi=80)
ggsave("plot_4.png", p4, width=10, height=6.25, dpi=80)
关于r - 在 R 中可视化纵向分类数据的好方法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/11513149/
我正在尝试使用 Pandas 和 scikit-learn 在 Python 中执行分类。我的数据集包含文本变量、数值变量和分类变量的混合。 假设我的数据集如下所示: Project Cost
我想要一种图形化且有吸引力的方式来表示二进制数据的列总和,而不是表格格式。我似乎无法让它发挥作用,尽管有人会认为这将是一次上篮。 数据看起来像这样(我尝试创建一个可重现的示例,但无法让代码填充 0 和
我有一个简单的类别模型: class Category(models.Model): name = models.CharField(max_length=200) slug = mo
我正在开发一个知识系统,当用户进入一道菜时,该系统可以返回酒。我的想法是根据用户的输入为每个葡萄酒类别添加分数,然后显示最适合的葡萄酒类别的前 3 个。例如,如果有人输入鱼,那么知识库中的所有红葡萄酒
我目前正在研究流失问题的预测模型。 每当我尝试运行以下模型时,都会收到此错误:至少一个类级别不是有效的 R 变量名称。这将在生成类概率时导致错误,因为变量名称将转换为 X0、X1。请使用可用作有效 R
如何对栅格重新分类(子集)r1 (与 r2 具有相同的尺寸和范围)基于 r2 中的以下条件在给定的示例中。 条件: 如果网格单元格值为 r2是 >0.5 ,保留>0.5中对应的值以及紧邻0.5个值的相
我想知道在 java 中进行以下分类的最佳方法是什么。例如,我们有一个简单的应用程序,其分类如下: 空气 -----电机类型 -----------平面对象 -----非电机型 -----------
这是一个非常基本的示例。但我正在做一些数据分析,并且不断发现自己编写非常类似的 SQL 计数查询来生成概率表。 我的表被定义为值 0 表示事件未发生,而值 1 表示事件确实发生。 > sqldf(
假设我有一组护照图像。我正在开展一个项目,我必须识别每本护照上的姓名,并最终将该对象转换为文本。 对于标签(或分类(我认为是初学者))的第一部分,每本护照上都有姓名,我该怎么做? 我可以使用哪些技术/
我有这张图片: 我想做的是在花和树之间对这张图片进行分类,这样我就可以找到图片中被树木覆盖的区域,以及被那些花覆盖的区域。 我在想这可能是某种 FFT 问题,但我不确定它是如何工作的。单个花的 FFT
我的数据集有 32 个分类变量和一个数值连续变量(sales_volume) 首先,我使用单热编码 (pd.get_dummies) 将分类变量转换为二进制,现在我有 1294 列,因为每一列都有多个
我正在尝试学习一些神经网络来获得乐趣。我决定尝试从 kaggle 的数据集中对一些神奇宝贝传奇卡进行分类。我阅读了文档并遵循了机器学习掌握指南,同时阅读了媒体以尝试理解该过程。 我的问题/疑问:我尝试
我目前正在进行推文情绪分析,并且有几个关于步骤的正确顺序的问题。请假设数据已经过相应的预处理和准备。所以这就是我将如何进行: 使用 train_test_split(80:20 比例)停止测试数据集。
一些上下文:Working with text classification and big sparse matrices in R 我一直在研究 text2vec 的文本多类分类问题。包装和 ca
数据 我有以下(简化的)数据集,我们称之为 df从现在开始: species rank value 1
我一直在尝试创建一个 RNN。我总共有一个包含 1661 个单独“条目”的数据集,每个条目中有 158 个时间序列坐标。 以下是一个条目的一小部分: 0.00000000e+00 1.9260968
我有一个关于机器学习的分类和回归问题。第一个问题,以下数据集 http://it.tinypic.com/view.php?pic=oh3gj7&s=8#.VIjhRDGG_lF 我们可以说,数据集是
我用1~200个数据作为训练数据,201~220个作为测试数据格式如下:3 个类(类 1、类 2、类 3)和 20 个特征 2 1:100 2:96 3:88 4:94 5:96 6:94 7:72
我有 2 个基于多个数字特征(例如 v1….v20)的输出类别(好和差)。 如果 v1、v2、v3 和 v4 为“高”,则该类别为“差”。如果 v1、v2、v3 和 v4 为“低”,则该类别为“好”
我遇到了使用朴素贝叶斯将文档分类为各种类别问题的问题。 实际上我想知道 P(C) 或我们最初掌握的类别的先验概率会随着时间的推移而不断变化。例如,对于类(class) - [音乐、体育、新闻] 初始概
我是一名优秀的程序员,十分优秀!