- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有 20X20 的数据集。我想将其以 2X2 × 4 列的 block 形式并行写入。我正在使用并行 HDF5。现在每个等级有 25 个 block 要写入。我不明白如何为此编码,因为当我使用普通分块时,所有等级都会写入整个 20X20 数据集。当我使用hyperslab时,我不知道如何为每个等级写入的多个 block 设置它。有人给我指点吗?我真的被困住了。
最佳答案
我不太确定我完全理解你的要求。这就是我如何解释你的问题。
您不必设置分块,事实上我通常不会。
我会这样做。
它看起来是这样的。
! Program to use MPI_Cart and Parallel HDF5
!
program hdf_pwrite
use mpi
use hdf5
use kinds, only : r_dp
implicit none
! Local array size with halo
integer, parameter :: g_N = 20
integer, parameter :: ndims = 2
integer, parameter :: halo = 0
integer :: argc ! Number of command line arguments
integer :: ierr ! Error status
integer :: id ! My rank/ID
integer :: np ! Number of processors
integer :: iunit ! File descriptor
integer :: i,j ! Loop indexers
integer :: n(ndims) ! Local N for i and j directions
integer :: total(ndims) ! Local total dimension size
! MPI IO/Lustre file striping
integer :: lcount ! Lustre count size
integer :: lsize ! Lustre stripe size
character(len=1024) :: clcount, clsize ! Strings of LFS
integer :: info ! MPI IO Info
integer :: m_dims(ndims) ! MPI cart dims
integer :: coords(ndims) ! Co-ords of procs in the grid
logical :: is_periodic(ndims) ! Periodic boundary conditions
logical :: reorder ! Reorder the MPI structure
integer :: MPI_COMM_2D ! New communicator
character(len=1024) :: filename
integer(kind=hid_t) :: p_id, f_id, x_id, d_id, c_id
integer(kind=hid_t) :: memspace, filespace
! Chunk sizes
integer(kind=hsize_t) :: c_size(ndims)
! Local hyper slab info
integer(kind=hsize_t) :: d_size(ndims), s_size(ndims), h_size(ndims), &
stride(ndims), block(ndims)
! Global hyper slab info
integer(kind=hsize_t) :: g_size(ndims), g_start(ndims)
! Local data array
real(kind=r_dp), allocatable :: ld(:,:)
argc = 0
ierr = 0
m_dims = (/ 0, 0/)
is_periodic = .false. ! Non-periodic
reorder = .false. ! Not allowed to reorder
call mpi_init(ierr)
! Set up the MPI cartesian topology
call mpi_comm_size(MPI_COMM_WORLD, np, ierr)
call mpi_dims_create(np, ndims, m_dims, ierr)
call mpi_cart_create(MPI_COMM_WORLD, ndims, m_dims, is_periodic, &
reorder, MPI_COMM_2D, ierr)
call mpi_comm_rank(MPI_COMM_2D, id, ierr)
call mpi_cart_coords(MPI_COMM_2D, id, ndims, coords, ierr)
if (id .eq. 0) then
if (mod(g_N,np) .ne. 0) then
write(0,*) 'Must use divisiable number of procs.'
call mpi_abort(MPI_COMM_WORLD, 1, ierr)
endif
! get the filename
argc = command_argument_count()
if (argc .lt. 1 ) then
write(0, *) 'Must supply a filename'
call exit(1)
endif
call get_command_argument(1, filename)
endif
! Broadcast the filename
call mpi_bcast(filename, len(filename), MPI_CHAR, 0, &
MPI_COMM_WORLD, ierr)
! Init the HDF5 library
call h5open_f(ierr)
! Set a stripe count of 4 and a stripe size of 4MB
lcount = 4
lsize = 4 * 1024 * 1024
write(clcount, '(I4)') lcount
write(clsize, '(I8)') lsize
call mpi_info_create(info, ierr)
call mpi_info_set(info, "striping_factor", trim(clcount), ierr)
call mpi_info_set(info, "striping_unit", trim(clsize), ierr)
! Set up the access properties
call h5pcreate_f(H5P_FILE_ACCESS_F, p_id, ierr)
call h5pset_fapl_mpio_f(p_id, MPI_COMM_2D, info, ierr)
! Open the file
call h5fcreate_f(filename, H5F_ACC_TRUNC_F, f_id, ierr, &
access_prp = p_id)
if (ierr .ne. 0) then
write(0,*) 'Unable to open: ', trim(filename), ': ', ierr
call mpi_abort(MPI_COMM_WORLD, 1, ierr)
endif
! Generate our local matrix
do i = 1, ndims
n(i) = g_N / m_dims(i)
total(i) = n(i) + (2 * halo)
end do
if (halo .ne. 0) then
allocate(ld(0:total(1)-1, 0:total(2)-1), stat=ierr)
else
allocate(ld(total(1),total(2)), stat=ierr)
end if
if (ierr .ne. 0) then
write(0,*) 'Unable to allocate local data array: ', ierr
call mpi_abort(MPI_COMM_WORLD, 1, ierr)
end if
ld = -99.99
! init the local data
do j = 1, n(2)
do i = 1, n(1)
ld(i,j) = id
enddo
enddo
! Create the local memory space and hyperslab
do i = 1, ndims
d_size(i) = total(i)
s_size(i) = n(i)
h_size(i) = halo
stride(i) = 1
block(i) = 1
enddo
call h5screate_simple_f(ndims, d_size, memspace, ierr)
call h5sselect_hyperslab_f(memspace, H5S_SELECT_SET_F, &
h_size, s_size, ierr, &
stride, block)
! Create the global file space and hyperslab
g_size = g_N
do i = 1, ndims
g_start(i) = n(i) * coords(i)
enddo
call h5screate_simple_f(ndims, g_size, filespace, ierr)
call h5sselect_hyperslab_f(filespace, H5S_SELECT_SET_F, &
g_start, s_size, ierr, &
stride, block)
! Create a data chunking property
c_size = 2
call h5pcreate_f(H5P_DATASET_CREATE_F, c_id, ierr)
call h5pset_chunk_f(c_id, ndims, c_size, ierr)
! Create the dataset id
call h5dcreate_f(f_id, "/data", H5T_IEEE_F64LE, filespace, d_id, &
ierr, dcpl_id=c_id)
! Create a data transfer property
call h5pcreate_f(H5P_DATASET_XFER_F, x_id, ierr)
call h5pset_dxpl_mpio_f(x_id, H5FD_MPIO_COLLECTIVE_F, ierr)
! Write the data
call h5dwrite_f(d_id, H5T_IEEE_F64LE, ld, s_size, ierr, &
file_space_id=filespace, mem_space_id=memspace, &
xfer_prp=x_id)
if (allocated(ld)) then
deallocate(ld)
endif
! Close everything and exit
call h5dclose_f(d_id, ierr)
call h5sclose_f(filespace, ierr)
call h5sclose_f(memspace, ierr)
call h5pclose_f(c_id, ierr)
call h5pclose_f(x_id, ierr)
call h5pclose_f(p_id, ierr)
call h5fclose_f(f_id, ierr)
call h5close_f(ierr)
call mpi_finalize(ierr)
end program hdf_pwrite
为了完整起见,这里是种类
的定义。
module kinds
use, intrinsic :: iso_fortran_env
implicit none
private
public :: i_sp, i_dp, &
r_sp, r_dp, r_qp
integer, parameter :: i_sp = INT32
integer, parameter :: i_dp = INT64
integer, parameter :: r_sp = REAL32
integer, parameter :: r_dp = REAL64
integer, parameter :: r_qp = REAL128
end module kinds
然后编译、运行并查看输出文件:
$ make
rm -f kinds.o kinds.mod
h5pfc -c -O3 -o kinds.o kinds.f90
rm -f hdf_pwrite.o hdf_pwrite.mod
h5pfc -c -O3 -o hdf_pwrite.o hdf_pwrite.f90
h5pfc -O3 -o hdf_pwrite kinds.o hdf_pwrite.o
$ mpiexec -np 4 ./hdf_pwrite test.h5
$ h5dump test.h5
HDF5 "test.h5" {
GROUP "/" {
DATASET "data" {
DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { ( 20, 20 ) / ( 20, 20 ) }
DATA {
(0,0): 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
(1,0): 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
(2,0): 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
(3,0): 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
(4,0): 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
(5,0): 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
(6,0): 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
(7,0): 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
(8,0): 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
(9,0): 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
(10,0): 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
(11,0): 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
(12,0): 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
(13,0): 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
(14,0): 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
(15,0): 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
(16,0): 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
(17,0): 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
(18,0): 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
(19,0): 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
}
}
}
}
希望这有帮助。
编辑:当然,您应该使用更好的算法来进行域分解,例如 MPE_Decomp1d
.
关于parallel-processing - 如何使用并行 HDF5 按多个等级分块写入,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31283594/
在 Oracle 中,PARALLEL 被广泛使用。提示 PARALLEL、PARALLEL(8) 和 PARALLEL(a,8) 有什么区别。如何选择最佳的查询提示? SELECT /*+ PARA
好的,我希望以前没有问过这个问题,因为在搜索中很难找到。 我查看了 F95 手册,但仍然觉得这很模糊: For the simple case of: DO i=0,99 END DO 我正
我有一个 C-shell 脚本,其中有一个名为 $hosts_string 的变量,格式为: host1,host2,...,hostN 我还有一个名为 $chrs_string 的变量,其形式为:
是否可以从由gnu parallel产生的脚本的多次运行中调用gnu parallel? 我有一个python脚本,可以运行100个顺序顺序迭代,并且在每次迭代中的某处,并行计算4个值(使用gnu p
我想在几个输入上运行几个长时间运行的进程。例如。: solver_a problem_1 solver_b problem_1 ... solver_b problem_18 solver_c pro
TParallel.&For 和 TParallel.For 之间有区别吗? 两者都可以在 Delphi 10 Seattle 中编译。那么我应该坚持哪一个呢? 最佳答案 TParallel.&For
我第一次使用 julia 进行并行计算.我有点头疼。所以假设我开始 julia如下:julia -p 4 .然后我为所有处理器声明 a 函数,然后将它与 pmap 一起使用还有@parallel fo
关闭。这个问题是off-topic .它目前不接受答案。 想改善这个问题吗? Update the question所以它是 on-topic对于堆栈溢出。 10年前关闭。 Improve this
我有一堆相互排斥的方法,因此可以并行运行。有这样做的好方法吗?到目前为止,我有以下两种实现方式,但我不确定是否应该选择其中一种。 使用 Parallel.For : Parallel.For(0, 2
我对并行运行脚本很感兴趣,并且我已经开始查看 GNU 并行工具,但是我遇到了一些麻烦。我的脚本 doSomething 有 3 个参数,我想在参数的不同值上并行运行脚本。我该怎么做? 我试过:para
我需要在多核(和多线程)机器上运行多个作业。我正在使用 GNU Parallel utility跨核心分配作业以加速任务。要执行的命令在名为“命令”的文件中可用。我使用以下命令运行 GNU Paral
我正在尝试使用如下两个输入运行 Python 脚本。我得到了大约 300 个这两个输入,所以我想知道是否有人可以建议如何并行运行它们。 单次运行看起来像: python stable.py KOG_1
每天我都必须更新一堆存储库,并在其中一些中执行另一个命令(来自 CARTON,Perl 模块依赖管理器)。我总是使用循环来执行此操作,但我想与 并行执行GNU 并行 如果可能,但我不太了解它的tuto
正如标题所说:@parallel 之间究竟有什么区别?和 pmap ?我的意思不是明显的一个是循环的宏,另一个适用于函数,我的意思是它们的实现究竟有什么不同,我应该如何使用这些知识在它们之间进行选择?
我有一些矩阵乘法运算。我想通过多个处理器并行执行这些操作。这可以使用 MPI(消息传递接口(interface))在高性能计算集群上完成。 同样,我可以使用多个辅助角色在云中进行一些并行化吗?有什么办
joblib模块提供了一个简单的帮助程序类,以使用多处理并行编写循环的循环。 这段代码使用列表推导来完成这项工作: import time from math import sqrt from job
我的问题是这样的one .但我想做一些不同的事情... 例如,在我的并行区域内,我想在 4 个线程上运行我的代码。当每个线程进入 for 循环时,我想在 8 个线程上运行我的代码。像 #pramga
我正在尝试使用 ipython 并行库中的并行计算。但是我对此知之甚少,而且我发现很难从对并行计算一无所知的人那里阅读该文档。 有趣的是,我发现的所有教程都只是重复使用文档中的示例,并使用相同的解释,
我的项目结构看起来像 Root + subproj1 + subproj2 在每个子项目中定义了自己的任务 run(){}。 我想要做的是从 Root 项目的运行任务并行运行 :subpro
我有一个 Foo ID 的列表。我需要为每个 ID 调用一个存储过程。 例如 Guid[] siteIds = ...; // typically contains 100 to 300 elemen
我是一名优秀的程序员,十分优秀!