- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想在函数调用 d(n)
之前比较 networkx.Graph
对象 n
的状态(有副作用)之后与国家合作。
有一些可变的对象节点属性,例如 n.node[0]['attribute']
,我想对其进行比较。
显然,
before = n
d()
after = n
assert id(before.node[0]['attribute']) == id(after.node[0]['attribute'])
取得了微不足道的成功,因为
before == after
但如果我设置 before=n.copy()
,则会进行深层复制,因此 id(before.node[0]['attribute']) != id (after.node[0]['属性'])
。如何在不复制所有节点属性对象的情况下获取 Graph 对象的副本?
最佳答案
调用copy
方法会产生深层复制。新图的所有属性都是原始图的副本。调用构造函数(例如Graph(G)
)会给出一个浅拷贝,其中复制图结构,但数据属性引用原始图中的数据属性。
来自copy
方法文档
All copies reproduce the graph structure, but data attributes may be handled in different ways. There are four types of copies of a graph that people might want.
Deepcopy -- The default behavior is a "deepcopy" where the graph structure as well as all data attributes and any objects they might contain are copied. The entire graph object is new so that changes in the copy do not affect the original object.
Data Reference (Shallow) -- For a shallow copy (with_data=False) the graph structure is copied but the edge, node and graph attribute dicts are references to those in the original graph. This saves time and memory but could cause confusion if you change an attribute in one graph and it changes the attribute in the other.
In [1]: import networkx as nx
In [2]: G = nx.Graph()
In [3]: G.add_node(1, color=['red'])
In [4]: G_deep = G.copy()
In [5]: G_deep.node[1]['color'].append('blue')
In [6]: list(G.nodes(data=True))
Out[6]: [(1, {'color': ['red']})]
In [7]: list(G_deep.nodes(data=True))
Out[7]: [(1, {'color': ['red', 'blue']})]
In [8]: G_shallow = nx.Graph(G)
In [9]: G_shallow.node[1]['color'].append('blue')
In [10]: list(G.nodes(data=True))
Out[10]: [(1, {'color': ['red', 'blue']})]
In [11]: list(G_shallow.nodes(data=True))
Out[11]: [(1, {'color': ['red', 'blue']})]
关于networkx - 如何复制而不是深度复制 networkx 图?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39555831/
我正在尝试对网络上的投票动态进行建模,并希望能够在 NetworkX 中创建一个图表,在其中我可以在节点上迭代投票过程,让它们的颜色变化对应于它们的投票“标签”。 我已设法获得此代码以查看每个节点的属
我无法计算简单 NetworkX 加权图的中心性。 这是正常的还是我做错了什么? 我使用简单的 add_edge(c[0],c[1],weight = my_values) 添加边,其中c[0],c[
我想在函数调用 d(n) 之前比较 networkx.Graph 对象 n 的状态(有副作用)之后与国家合作。 有一些可变的对象节点属性,例如 n.node[0]['attribute'],我想对其进
我正在使用 NetworkX 生成一些噪声数据的图表。我想通过删除虚假分支来“清理”图表,并希望避免重新发明轮子。 例如,链接的图片显示了一组示例图形,作为由灰线连接的彩色节点。我想修剪白框指示的节点
我目前正在尝试制定一种算法来在图中查找派系,幸运的是我从 Networkx 找到了一个函数的文档,该函数就是这样做的。不幸的是,变量名有点简洁,我很难理解代码的每一部分的作用。 这里是 find_cl
我正在尝试使用 NetworkX 在两个节点之间添加平行边,但由于以下错误而失败。我究竟做错了什么? import networkx as nx import graphviz g1 = nx.Mul
我希望将 Pajek 数据集转换为 networkx Graph()。数据集来自哥斯达黎加Family Ties 。我正在使用非常方便的 networkx.read_pajek(pathname) 函
我在networkx中有一个巨大的图,我想从每个节点获取深度为2的所有子图。有没有一种好的方法可以使用networkx中的内置函数来做到这一点? 最佳答案 正如我在评论中所说,networkx.ego
我希望将 Pajek 数据集转换为 networkx Graph()。数据集来自哥斯达黎加Family Ties 。我正在使用非常方便的 networkx.read_pajek(pathname) 函
我在使用以下代码时遇到问题。边连接节点。但是是否有可能有一个定向网络,如果一个“人”跟随一个“人”,但它只是一种方式,在边缘有箭头或方向。 plt.figure(figsize=(12, 12)) #
我正在 Windows 机器上使用 Python 3,尽管付出了很多努力,但仍未能安装 pygraphviz。单独讨论。 我有networkx和graphviz模块...是否有一个范例可以在netwo
我正在使用《Python 自然语言处理》一书(“www.nltk.org/book”)自学 Python 和 NLTK。 我在 NetworkX 上被困在第 4 章第 4 部分第 8 部分。当我尝试运
下面是我的代码: import networkx as nx for i in range(2): G = nx.DiGraph() if i==0: G.add_ed
我正在使用 deap 符号回归示例问题中的这段代码,图形显示正常,但我希望节点扩展为圆角矩形以适合文本 自动 . (我不想只是通过反复试验来指定节点大小)。我该怎么做? # show tree imp
我正在尝试使用 networkx 读取 gml 文件(很简单吧?),除非我尝试读取文件时出现错误“networkx.exception.NetworkXError: cannot tokenize u
如何按厚度在networkx中绘制N> 1000个节点的加权网络?如果我有一个源、目标节点和每个边的权重的 .csv 列表,我正在考虑使用该方法: for i in range(N) G.add_ed
我希望 networkx 在我的定向中找到绝对最长的路径, 无环图。 我知道 Bellman-Ford,所以我否定了我的图长度。问题: networkx 的 bellman_ford() 需要一个源节
我在图中有一个节点,它充当一种“临时连接器”节点。我想删除该节点并更新图中的边,以便其所有直接前辈都指向其直接后继者。 在 networkx 中是否有内置功能可以做到这一点,还是我需要推出自己的解决方
我有两张彩色图表。我想确定它们是否同构,条件是同构必须保留顶点颜色。 networkx 中是否有算法可以做到这一点? 这些图是无向且简单的。 最佳答案 检查documentation对于is_isom
我有一组起点-终点坐标,我想计算它们之间的最短路径。 我的起点-终点坐标有时位于一条长直线道路的中间。但是,OSMnx/networkx 计算的最短路径不会考虑中间边到最近节点的路径。 OSMnx 或
我是一名优秀的程序员,十分优秀!