- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我是内存映射领域的新手,我想知道是否有任何方法可以使用映射到字符串的内存来读取文本文件。我真的不知道如何开始编写代码。
最佳答案
内存映射 I/O 的总体思路是,您告诉操作系统 (OS) 您想要什么文件,它(在完成一定量的设置工作后)告诉您< em>该文件现在在内存中的位置。
执行该合约后,您应该能够以您希望的任何方式(例如使用 memcpy
)将内容复制到该内存或从该内存中复制内容,并且它将神奇地处理 I/O你。
详细信息取决于您使用的操作系统,因为 ISO C 标准没有指定此行为 - 因此它是特定于操作系统的。
例如,Windows 使用显示 here 的文件映射范例,而 Linux 使用 mmap
允许您将已打开的文件设置为内存映射(通过其文件描述符)。
举个例子,这个 Linux 程序有点庞大,主要是因为它的错误检查和进度报告,内存映射 file.txt
文件并输出其内容:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>
// Helper function to minimise error code in main.
static int clean(
int retVal, // value to return.
char *err, // error/NULL, allows optional %s for strerror(errno).
int fd, // fd/-1 to close.
void *filMem, // memory/NULL to unmap.
off_t sz, // size if unmapping.
void *locMem // memory/NULL to free.
) {
if (err) printf (err, strerror(errno));
if (locMem) free(locMem);
if (filMem) munmap(filMem, sz);
if (fd >= 0) close(fd);
return retVal;
}
int main(void) {
int fd = open("file.txt", O_RDONLY);
if (fd < 0) return clean(-1, "Can't open: %s\n", -1, NULL, 0, NULL);
printf("File opened okay, fd = %d.\n", fd);
off_t sz = lseek(fd, 0, SEEK_END);
if (sz == (off_t) -1) return clean(-1, "Can't seek: %s\n", fd, NULL, 0, NULL);
printf("File size is %ld.\n", sz);
void *fileArea = mmap(NULL, sz, PROT_READ, MAP_SHARED, fd, 0);
if (! fileArea) return clean(-1, "Can't map: %s\n", fd, NULL, 0, NULL);
printf("File mapped to address %p.\n", fileArea);
char *localArea = calloc(1, sz + 1);
if (! localArea) return clean(-1, "Can't allocate\n", fd, fileArea, sz, NULL);
memcpy(localArea, fileArea, sz);
printf("Data copied to %p, result is [\n%s]\n", localArea, localArea);
return clean(0, NULL, fd, fileArea, sz, localArea);
}
在我的本地系统上运行该程序,可以从以下记录中看到结果:
pax$ cat file.txt
...This is the input file content.
pax$ ./testprog
File opened okay, fd = 3.
File size is 35.
File mapped to address 0x7f868a93b000.
Data copied to 0x1756420, result is [
...This is the input file content.
]
关于c - 从文件 I/O C/C++ 读取内存映射,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53644317/
在使用 requests 库中的状态代码时,我遇到了一些奇怪的事情。每个 HTTP 状态代码都有一个常量,有些具有别名(例如,包括 200 的复选标记): url = 'https://httpbin
这是我得到的代码,但我不知道这两行是什么意思: o[arr[i]] = o[arr[i]] || {}; o = o[arr[i]]; 完整代码: var GLOBAL={}; GLOBAL.name
所以这个问题的答案What is the difference between Θ(n) and O(n)? 指出“基本上,当我们说算法是 O(n) 时,它也是 O(n2)、O(n1000000)、O
这是一个快速的想法;有人会说 O(∞) 实际上是 O(1) 吗? 我的意思是它不依赖于输入大小? 所以在某种程度上它是恒定的,尽管它是无限的。 或者是唯一“正确”的表达方式 O(∞)? 最佳答案 无穷
这是真的: log(A) + log(B) = log(A * B) [0] 这也是真的吗? O(log(A)) + O(log(B)) = O(log(A * B)) [1] 据我了解 O(f
我正在解决面试练习的问题,但我似乎无法找出以下问题的时间和空间复杂度的答案: Given two sorted Linked Lists, merge them into a third list i
我了解 Big-Oh 表示法。但是我该如何解释 O(O(f(n))) 是什么意思呢?是指增长率的增长率吗? 最佳答案 x = O(n)基本上意味着 x <= kn对于一些常量 k . 因此 x = O
我正在编写一个函数,该函数需要一个对象和一个投影来了解它必须在哪个字段上工作。 我想知道是否应该使用这样的字符串: const o = { a: 'Hello There' }; funct
直觉上,我认为这三个表达式是等价的。 例如,如果一个算法在 O(nlogn) + O(n) 或 O(nlogn + n) 中运行(我很困惑),我可以假设这是一个O(nlogn) 算法? 什么是真相?
根据 O'Reilly 的 Python in a Nutshell 中的 Alex Martelli,复杂度类 O(n) + O(n) = O(n)。所以我相信。但是我很困惑。他解释说:“N 的两个
O(n^2)有什么区别和 O(n.log(n)) ? 最佳答案 n^2 的复杂性增长得更快。 关于big-o - 大 O 符号 : differences between O(n^2) and O(n
每当我收到来自 MS outlook 的电子邮件时,我都会收到此标记 & nbsp ; (没有空格)哪个显示为?在 <>. 当我将其更改为 ISO-8859-1 时,浏览器页面字符集编码为 UTF-8
我很难理解 Algorithms by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani - page 24 中的以下陈述它们将 O(n) 的总和表
我在面试蛋糕上练习了一些问题,并在问题 2给出的解决方案使用两个单独的 for 循环(非嵌套),解决方案提供者声称他/她在 O(n) 时间内解决了它。据我了解,这将是 O(2n) 时间。是我想错了吗,
关于 Java 语法的幼稚问题。什么 T accept(ObjectVisitorEx visitor); 是什么意思? C# 的等价物是什么? 最佳答案 在 C# 中它可能是: O Accept(
假设我有一个长度为 n 的数组,我使用时间为 nlogn 的排序算法对它进行了排序。得到这个排序后的数组后,我遍历它以找到任何具有线性时间的重复元素。我的理解是,由于操作是分开发生的,所以时间是 O(
总和 O(1)+O(2)+ .... +O(n) 的计算结果是什么? 我在某处看到它的解决方案: O(n(n+1) / 2) = O(n^2) 但我对此并不满意,因为 O(1) = O(2) = co
这个问题在这里已经有了答案: 11 年前关闭。 Possible Duplicate: Plain english explanation of Big O 我想这可能是类里面教的东西,但作为一个自学
假设我有两种算法: for (int i = 0; i 2)更长的时间给定的一些n - 其中n这种情况的发生实际上取决于所涉及的算法 - 对于您的具体示例, n 2)分别时间,您可能会看到: Θ(n)
这个问题在这里已经有了答案: Example of a factorial time algorithm O( n! ) (4 个回答) 6年前关闭。 我见过表示为 O(X!) 的 big-o 示例但
我是一名优秀的程序员,十分优秀!