- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在拟合一个模型来分解数据并进行预测。如果newdata
中的predict.lm()
包含模型未知的单个因子级别,则所有predict.lm()
都会失败并返回错误。
有没有一种好方法可以让predict.lm()
返回模型已知的那些因子水平的预测,而对于未知的因子水平返回NA,而不仅仅是一个错误?
示例代码:
foo <- data.frame(response=rnorm(3),predictor=as.factor(c("A","B","C")))
model <- lm(response~predictor,foo)
foo.new <- data.frame(predictor=as.factor(c("A","B","C","D")))
predict(model,newdata=foo.new)
NA
。
最佳答案
通过MorgenBall整理和扩展了功能。现在也可以在sperrorest中实现。
附加功能
NA
。 test_data
中是否存在因子变量,并返回原始data.frame(如果不存在)lm
,glm
,而且还适用于glmmPQL
#' @title remove_missing_levels
#' @description Accounts for missing factor levels present only in test data
#' but not in train data by setting values to NA
#'
#' @import magrittr
#' @importFrom gdata unmatrix
#' @importFrom stringr str_split
#'
#' @param fit fitted model on training data
#'
#' @param test_data data to make predictions for
#'
#' @return data.frame with matching factor levels to fitted model
#'
#' @keywords internal
#'
#' @export
remove_missing_levels <- function(fit, test_data) {
# https://stackoverflow.com/a/39495480/4185785
# drop empty factor levels in test data
test_data %>%
droplevels() %>%
as.data.frame() -> test_data
# 'fit' object structure of 'lm' and 'glmmPQL' is different so we need to
# account for it
if (any(class(fit) == "glmmPQL")) {
# Obtain factor predictors in the model and their levels
factors <- (gsub("[-^0-9]|as.factor|\\(|\\)", "",
names(unlist(fit$contrasts))))
# do nothing if no factors are present
if (length(factors) == 0) {
return(test_data)
}
map(fit$contrasts, function(x) names(unmatrix(x))) %>%
unlist() -> factor_levels
factor_levels %>% str_split(":", simplify = TRUE) %>%
extract(, 1) -> factor_levels
model_factors <- as.data.frame(cbind(factors, factor_levels))
} else {
# Obtain factor predictors in the model and their levels
factors <- (gsub("[-^0-9]|as.factor|\\(|\\)", "",
names(unlist(fit$xlevels))))
# do nothing if no factors are present
if (length(factors) == 0) {
return(test_data)
}
factor_levels <- unname(unlist(fit$xlevels))
model_factors <- as.data.frame(cbind(factors, factor_levels))
}
# Select column names in test data that are factor predictors in
# trained model
predictors <- names(test_data[names(test_data) %in% factors])
# For each factor predictor in your data, if the level is not in the model,
# set the value to NA
for (i in 1:length(predictors)) {
found <- test_data[, predictors[i]] %in% model_factors[
model_factors$factors == predictors[i], ]$factor_levels
if (any(!found)) {
# track which variable
var <- predictors[i]
# set to NA
test_data[!found, predictors[i]] <- NA
# drop empty factor levels in test data
test_data %>%
droplevels() -> test_data
# issue warning to console
message(sprintf(paste0("Setting missing levels in '%s', only present",
" in test data but missing in train data,",
" to 'NA'."),
var))
}
}
return(test_data)
}
predict(model,newdata=remove_missing_levels (fit=model, test_data=foo.new))
lm
,
glm
等这样的SL学习方法在训练和测试中需要相同的级别,而如果删除了这些学习方法,则ML学习方法(
svm
,
randomForest
)将失败。这些方法需要培训和测试的各个级别。
fit$xlevels
的
lm
和
fit$contrasts
的
glmmPQL
)。至少在
lm
相关模型之间似乎是一致的。
关于r - 在测试数据中具有未知因子水平的predict.lm(),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/4285214/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!