- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我是DL和Keras的新手。
我试图在Keras中使用预训练的VGG16实现感知损失,但遇到了一些麻烦。我已经找到了question,但我仍在努力:/
我的网络应该做的简短说明:
我有一个CNN(以下称为mainModel),它获取灰度图像作为输入(#TrainData,512、512、1),并输出相同大小的灰度图像。网络应减少图像中的伪像-但我认为这对这个问题并不重要。而不是使用例如MSE作为损失函数,我想实现感性损失。
我想做什么(我希望我已经正确理解了感知损失的概念):
我想在我的mainModel上添加一个lossModel(带有固定参数的预训练VGG16)。然后,我想将mainModel的输出传递给lossModel。另外,我将标签图像(Y_train)传递给lossModel。进一步,我使用(例如)比较了LossModel的特定层(例如block1_conv2)处的激活。 MSE并将其用作损失函数。
我到目前为止所做的:
加载数据并创建mainModel:
### Load data ###
with h5py.File('.\train_test_val.h5', 'r') as hf:
X_train = hf['X_train'][:]
Y_train = hf['Y_train'][:]
X_test = hf['X_test'][:]
Y_test = hf['Y_test'][:]
X_val = hf['X_val'][:]
Y_val = hf['Y_val'][:]
### Create Main Model ###
input_1 = Input((512,512,9))
conv0 = Conv2D(64, (3,3), strides=(1,1), activation=relu, use_bias=True, padding='same')(input_1)
.
.
.
mainModel = Model(inputs=input_1, outputs=output)
### Create Loss Model (VGG16) ###
lossModel = vgg16.VGG16(include_top=False, weights='imagenet', input_tensor=mainModel.output, input_shape=(512,512, 1))
lossModel.trainable=False
for layer in lossModel.layers:
layer.trainable=False
### Create new Model ###
fullModel = Model(inputs=mainModel.input, outputs=lossModel.output)
fullModel.compile(loss='mse', optimizer='adam',metrics=['mse','mae'])
fullModel.summary()
Y_train_lossModel = lossModel.predict(Y_train)
fullModel.fit(X_train, Y_train_lossModel, batch_size=32, epochs=5, validation_data=[X_val,Y_val])
最佳答案
channel 数
好吧,第一个问题很重要。
VGG模型是为3个 channel 的彩色图像制作的,因此,这不是您所需要的正确模型。我不确定是否有适用于黑白图像的模型,但是您应该搜索它们。
我不知道是否能很好地解决该问题的一种解决方法是制作mainModel
输出的3个副本。
tripleOut = Concatenate()([mainModel.output,mainModel.output,mainModel.output])
fullModel
的输入和输出之间的连接。您必须将
mainModel
的输出连接到
lossModel
的输入
lossModel
selectedLayers = [1,2,9,10,17,18] #for instance
#a list with the output tensors for each selected layer:
selectedOutputs = [lossModel.layers[i].output for i in selectedLayers]
#or [lossModel.get_layer(name).output for name in selectedLayers]
#a new model that has multiple outputs:
lossModel = Model(lossModel.inputs,selectedOutputs)
lossModel
的输出作为输入来调用
mainModel
(好像是一个图层):
lossModelOutputs = lossModel(tripleOut) #or mainModel.output if not using tripeOut
fullModel = Model(mainModel.input, lossModelOutputs)
#if the line above doesn't work due to a type problem, make a list with lossModelOutputs:
lossModelOutputs = [lossModelOutputs[i] for i in range(len(selectedLayers))]
lossModel
进行预测。但对于解决方法,我们也将其设为三重 channel :
triple_Y_train = np.concatenate((Y_train,Y_train,Y_train),axis=-1)
Y_train_lossModel = lossModel.predict(triple_Y_train)
#the output will be a list of numpy arrays, one for each of the selected layers
lossModel
之前使
fullModel.compile()
的每一层都不可训练。
fullModel.compile(loss='mse', ...)
fullModel.compile(loss=[loss1,loss2,loss3,...], ...)
mainModel
之后添加几层,以使输出合适。这不是绝对必需的,但是它将使用VGG的最佳性能。
关于tensorflow - 使用keras通过预训练的VGG实现知觉丧失,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47675094/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!