- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我使用accuracy
中的tf.metrics
函数来解决多个分类问题,并使用logits作为输入。
我的模型输出如下:
logits = [[0.1, 0.5, 0.4],
[0.8, 0.1, 0.1],
[0.6, 0.3, 0.2]]
labels = [[0, 1, 0],
[1, 0, 0],
[0, 0, 1]]
tf.metrics.accuracy(labels, logits)
的操作时,它永远不会给出正确的结果。我显然做错了,但我不知道是什么。
最佳答案
TL; DR
精度函数tf.metrics.accuracy根据它创建的两个局部变量total
和count
来计算预测与标签匹配的频率,这两个变量用于计算logits
与labels
匹配的频率。
acc, acc_op = tf.metrics.accuracy(labels=tf.argmax(labels, 1),
predictions=tf.argmax(logits,1))
print(sess.run([acc, acc_op]))
print(sess.run([acc]))
# Output
#[0.0, 0.66666669]
#[0.66666669]
total
和count
返回指标,就不会更新指标。 0.0
,请仔细阅读以下详细信息。
logits = tf.placeholder(tf.int64, [2,3])
labels = tf.Variable([[0, 1, 0], [1, 0, 1]])
acc, acc_op = tf.metrics.accuracy(labels=tf.argmax(labels, 1),
predictions=tf.argmax(logits,1))
metrics.accuracy
创建了两个局部变量
total
和
count
,因此我们需要调用
local_variables_initializer()
对其进行初始化。
sess = tf.Session()
sess.run(tf.local_variables_initializer())
sess.run(tf.global_variables_initializer())
stream_vars = [i for i in tf.local_variables()]
print(stream_vars)
#[<tf.Variable 'accuracy/total:0' shape=() dtype=float32_ref>,
# <tf.Variable 'accuracy/count:0' shape=() dtype=float32_ref>]
print('acc:',sess.run(acc, {logits:[[0,1,0],[1,0,1]]}))
#acc: 0.0
print('[total, count]:',sess.run(stream_vars))
#[total, count]: [0.0, 0.0]
total
和
count
为零,但上面给出的精度为0.0,尽管给出了匹配的输入。
print('ops:', sess.run(acc_op, {logits:[[0,1,0],[1,0,1]]}))
#ops: 1.0
print('[total, count]:',sess.run(stream_vars))
#[total, count]: [2.0, 2.0]
total
和
count
实际上给出了
total correctly predicted
和
total comparisons made
。
accuracy
:
print('acc:', sess.run(acc,{logits:[[1,0,0],[0,1,0]]}))
#acc: 1.0
print('op:',sess.run(acc_op,{logits:[[0,1,0],[0,1,0]]}))
#op: 0.75
print('[total, count]:',sess.run(stream_vars))
#[total, count]: [3.0, 4.0]
关于tensorflow - 如何正确使用tf.metrics.accuracy?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46409626/
在 Tensorflow(从 v1.2.1 开始)中,似乎有(至少)两个并行 API 来构建计算图。 tf.nn 中有函数,如 conv2d、avg_pool、relu、dropout,tf.laye
我正在处理眼睛轨迹数据和卷积神经网络。我被要求使用 tf.reduce_max(lastconv, axis=2)代替 MaxPooling 层和 tf.reduce_sum(lastconv,axi
TensorFlow 提供了 3 种不同的数据存储格式 tf.train.Feature .它们是: tf.train.BytesList tf.train.FloatList tf.train.In
我正在尝试为上下文强盗问题 (https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part
我在使用 Tensorflow 时遇到问题: 以下代码为卷积 block 生成正确的图: def conv_layer(self, inputs, filter_size = 3, num_filte
我正在将我的训练循环迁移到 Tensorflow 2.0 API .在急切执行模式下,tf.GradientTape替换 tf.gradients .问题是,它们是否具有相同的功能?具体来说: 在函数
tensorflow 中 tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) 的目的是什么? 更多上下文:
我一直在努力学习 TensorFlow,我注意到不同的函数用于相同的目标。例如,为了平方变量,我看到了 tf.square()、tf.math.square() 和 tf.keras.backend.
我正在尝试使用自动编码器开发图像着色器。有 13000 张训练图像。如果我使用 tf.data,每个 epoch 大约需要 45 分钟,如果我使用 tf.utils.keras.Sequence 大约
我尝试按照 tensorflow 教程实现 MNIST CNN 神经网络,并找到这些实现 softmax 交叉熵的方法给出了不同的结果: (1) 不好的结果 softmax = tf.nn.softm
其实,我正在coursera上做deeplearning.ai的作业“Art Generation with Neural Style Transfer”。在函数 compute_layer_styl
训练神经网络学习“异或” 我正在尝试使用“批量归一化”,我创建了一个批量归一化层函数“batch_norm1”。 import tensorflow as tf import nump
我正在尝试协调来自 TF“图形和 session ”指南以及 TF“Keras”指南和 TF Estimators 指南的信息。现在在前者中它说 tf.Session 使计算图能够访问物理硬件以执行图
我正在关注此处的多层感知器示例:https://github.com/aymericdamien/TensorFlow-Examples我对函数 tf.nn.softmax_cross_entropy
回到 TensorFlow = 2.0 中消失了。因此,像这样的解决方案...... with tf.variable_scope("foo"): with tf.variable_scope
我按照官方网站中的步骤安装了tensorflow。但是,在该网站中,作为安装的最后一步,他们给出了一行代码来“验证安装”。但他们没有告诉这段代码会给出什么输出。 该行是: python -c "imp
代码: x = tf.constant([1.,2.,3.], shape = (3,2,4)) y = tf.constant([1.,2.,3.], shape = (3,21,4)) tf.ma
我正在尝试从 Github 训练一个 3D 分割网络.我的模型是用 Keras (Python) 实现的,这是一个典型的 U-Net 模型。模型,总结如下, Model: "functional_3"
我正在使用 TensorFlow 2。我正在尝试优化一个函数,该函数使用经过训练的 tensorflow 模型(毒药)的损失。 @tf.function def totalloss(x): x
试图了解 keras 优化器中的 SGD 优化代码 (source code)。在 get_updates 模块中,我们有: # momentum shapes = [K.int_shape(p) f
我是一名优秀的程序员,十分优秀!