gpt4 book ai didi

python - 语法错误: invalid character in identifier Python 3.5.2 & tensorflow

转载 作者:行者123 更新时间:2023-12-03 08:11:27 28 4
gpt4 key购买 nike

我现在开始学习tensorflow ..跟随youtube vid并遵循该程序,但是得到了SyntaxError:标识符-line 53中的字符无效sess.run(tf.global_variables_initializer())...参见程序以下..任何帮助表示赞赏:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500

n_classes = 10
batch_size = 100

#height x width
x = tf.placeholder('float',[None, 784])
y = tf.placeholder('float')


def neural_network_model(data):
hidden_1_layer = {'weights' :tf.Variable(tf.random_normal([784, n_nodes_hl1])),'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))}

hidden_2_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl2]))}

hidden_3_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl3]))}

output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'biases': tf.Variable(tf.random_normal([n_classes]))}

# (input_data * weights) + biases

l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']), hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)

l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']), hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)

l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']), hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)

output = tf.matmul(l3, output_layer['weights']) + output_layer['biases']

return output

def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)

hm_epochs = 10

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())

for epoch in range(hm_epochs):
epoch_loss = 0
for _ in range(int(mnist.train.num_examples/batch_size)):
epoch_x, epoch_y = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict={x: epoch_x, y: epoch_y})
epoch_loss += c
print('Epoch', epoch, 'completed out of', hm_epochs, 'loss:', epoch_loss)

correct = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct,'float'))
print('Accuracy:',accuracy.eval({x:mnist.test.images, y:mnist.test.labels}))


train_neural_network(x)

最佳答案

前段时间我遇到了同样的错误。请不要复制粘贴来自其他编辑器或网页的代码。如果在编辑器中键入它,则不会出现该错误。

关于python - 语法错误: invalid character in identifier Python 3.5.2 & tensorflow,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42328339/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com