- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
numpy/pandas 因其底层加速(即矢量化)而闻名。
条件评估是常见的表达式,出现在任何地方的代码中。
但是,直观地使用 pandas dataframe apply
函数时,条件评估似乎非常慢。
我的apply
代码示例如下:
def condition_eval(df):
x=df['x']
a=df['a']
b=df['b']
if x <= a:
d = round((x-a)/0.01)-1
if d <- 10:
d = -10
elif x >= b:
d = round((x-b)/0.01)+1
if d > 10:
d = 10
else:
d = 0
return d
df['eval_result'] = df.apply(condition_eval, axis=1)
此类问题的特征可能是:
numpy/pandas 解决此类问题的最佳实践是什么?
还有一些想法。
在我看来,矢量化加速之所以有效的原因之一是因为底层CPU有某种矢量指令(例如SIMD、intel avx
),它依赖于一个事实:计算指令具有确定性行为,即无论输入数据如何,都可以在固定数量的CPU周期后获得结果。因此,并行化此类操作很容易。
然而,cpu中的分支执行要复杂得多。首先,相同条件评估的不同分支具有不同的执行路径,因此它们可能会导致不同的CPU周期。现代 CPU 甚至利用了很多技巧,例如分支预测,这会产生更多的不确定性。
所以我想知道 pandas 是否以及如何尝试加速此类向量条件评估操作,以及它们是否是处理此类计算工作负载的更好实践。
最佳答案
这应该是等效的:
import pandas as pd
import numpy as np
def get_eval_result(df):
conditions = (
df.x.le(df.a),
df.x.gt(df.b),
)
choices = (
np.where((d := df.x.sub(df.a).div(0.01).round().sub(1)).lt(-10), -10, d),
np.where((d := df.x.sub(df.b).div(0.01).round().add(1)).gt(10), 10, d),
)
return np.select(conditions, choices, 0)
df = df.assign(eval_result=get_eval_result)
我的答案基本上计算每个分支的结果,然后使用 numpy 语法来指定应使用哪些结果。这可以稍微优化,但由于它使用纯矢量化函数,它应该比使用 .apply
快得多。
关于python - 如何正确使用类似 numpy 的矢量化来加速 pandas 数据框应用函数中的复杂条件评估,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/73823545/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!