- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个神经网络,其组织如下:
conv1 - pool1 - local reponse normalization (lrn2) - conv2 - lrn2 - pool2 -
conv3 - pool3 - conv4 - pool4 - conv5 - pool5 - dense layer (local1) -
local2 - softmax
# Parameters
learning_rate = 0.0001
batch_size = 1024
n_classes = 1 # 1 since we need the value of the retrainer.
weights = {
'weights_conv1': tf.get_variable(name='weights1', shape=[5, 5, 3, 128], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer_conv2d(uniform=False, dtype=tf.float32)),
'weights_conv2': tf.get_variable(name='weights2', shape=[3, 3, 128, 128], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer_conv2d(uniform=False, dtype=tf.float32)),
'weights_conv3': tf.get_variable(name='weights3', shape=[3, 3, 128, 256], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer_conv2d(uniform=False, dtype=tf.float32)),
'weights_conv4': tf.get_variable(name='weights4', shape=[3, 3, 256, 256], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer_conv2d(uniform=False, dtype=tf.float32)),
'weights_conv5': tf.get_variable(name='weights5', shape=[3, 3, 256, 256], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer_conv2d(uniform=False, dtype=tf.float32)),
}
biases = {
'bc1': tf.Variable(tf.constant(0.1, shape=[128], dtype=tf.float32), trainable=True, name='biases1'),
'bc2': tf.Variable(tf.constant(0.1, shape=[128], dtype=tf.float32), trainable=True, name='biases2'),
'bc3': tf.Variable(tf.constant(0.1, shape=[256], dtype=tf.float32), trainable=True, name='biases3'),
'bc4': tf.Variable(tf.constant(0.1, shape=[256], dtype=tf.float32), trainable=True, name='biases4'),
'bc5': tf.Variable(tf.constant(0.1, shape=[256], dtype=tf.float32), trainable=True, name='biases5')
}
def inference(frames):
# frames = tf.Print(frames, data=[tf.shape(frames)], message='f size is:')
tf.summary.image('frame_resized', frames, max_outputs=32)
frame_normalized_sub = tf.subtract(frames, tf.constant(128, dtype=tf.float32))
frame_normalized = tf.divide(frame_normalized_sub, tf.constant(255.0), name='image_normalization')
# conv1
with tf.name_scope('conv1') as scope:
conv_2d_1 = tf.nn.conv2d(frame_normalized, weights['weights_conv1'], strides=[1, 4, 4, 1], padding='SAME')
conv_2d_1_plus_bias = tf.nn.bias_add(conv_2d_1, biases['bc1'])
conv1 = tf.nn.relu(conv_2d_1_plus_bias, name=scope)
tf.summary.histogram('con1_output_distribution', conv1)
tf.summary.histogram('con1_before_relu', conv_2d_1_plus_bias)
# norm1
with tf.name_scope('norm1'):
norm1 = tf.nn.lrn(conv1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')
tf.summary.histogram('norm1_output_distribution', norm1)
# pool1
with tf.name_scope('pool1') as scope:
pool1 = tf.nn.max_pool(norm1,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID',
name='pool1')
tf.summary.histogram('pool1_output_distribution', pool1)
# conv2
with tf.name_scope('conv2') as scope:
conv_2d_2 = tf.nn.conv2d(pool1, weights['weights_conv2'], strides=[1, 1, 1, 1], padding='SAME')
conv_2d_2_plus_bias = tf.nn.bias_add(conv_2d_2, biases['bc2'])
conv2 = tf.nn.relu(conv_2d_2_plus_bias, name=scope)
tf.summary.histogram('conv2_output_distribution', conv2)
tf.summary.histogram('con2_before_relu', conv_2d_2_plus_bias)
# norm2
with tf.name_scope('norm2'):
norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
name='norm2')
tf.summary.histogram('norm2_output_distribution', norm2)
# pool2
with tf.name_scope('pool2'):
pool2 = tf.nn.max_pool(norm2,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID',
name='pool2')
tf.summary.histogram('pool2_output_distribution', pool2)
# conv3
with tf.name_scope('conv3') as scope:
conv_2d_3 = tf.nn.conv2d(pool2, weights['weights_conv3'], strides=[1, 1, 1, 1], padding='SAME')
conv_2d_3_plus_bias = tf.nn.bias_add(conv_2d_3, biases['bc3'])
conv3 = tf.nn.relu(conv_2d_3_plus_bias, name=scope)
tf.summary.histogram('con3_output_distribution', conv3)
tf.summary.histogram('con3_before_relu', conv_2d_3_plus_bias)
# conv4
with tf.name_scope('conv4') as scope:
conv_2d_4 = tf.nn.conv2d(conv3, weights['weights_conv4'], strides=[1, 1, 1, 1], padding='SAME')
conv_2d_4_plus_bias = tf.nn.bias_add(conv_2d_4, biases['bc4'])
conv4 = tf.nn.relu(conv_2d_4_plus_bias, name=scope)
tf.summary.histogram('con4_output_distribution', conv4)
tf.summary.histogram('con4_before_relu', conv_2d_4_plus_bias)
# conv5
with tf.name_scope('conv5') as scope:
conv_2d_5 = tf.nn.conv2d(conv4, weights['weights_conv5'], strides=[1, 1, 1, 1], padding='SAME')
conv_2d_5_plus_bias = tf.nn.bias_add(conv_2d_5, biases['bc5'])
conv5 = tf.nn.relu(conv_2d_5_plus_bias, name=scope)
tf.summary.histogram('con5_output_distribution', conv5)
tf.summary.histogram('con5_before_relu', conv_2d_5_plus_bias)
# pool3
pool3 = tf.nn.max_pool(conv5,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID',
name='pool5')
tf.summary.histogram('pool3_output_distribution', pool3)
# local1
with tf.variable_scope('local1') as scope:
# Move everything into depth so we can perform a single matrix multiply.
shape_d = pool3.get_shape()
shape = shape_d[1] * shape_d[2] * shape_d[3]
# tf_shape = tf.stack(shape)
tf_shape = 1024
print("shape:", shape, shape_d[1], shape_d[2], shape_d[3])
reshape = tf.reshape(pool3, [-1, tf_shape])
weight_local1 = \
tf.get_variable(name='weight_local1', shape=[tf_shape, 2046], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer_conv2d(uniform=False, dtype=tf.float32))
bias_local1 = tf.Variable(tf.constant(0.1, tf.float32, [2046]), trainable=True, name='bias_local1')
local1_before_relu = tf.matmul(reshape, weight_local1) + bias_local1
local1 = tf.nn.relu(local1_before_relu, name=scope.name)
tf.summary.histogram('local1_output_distribution', local1)
tf.summary.histogram('local1_before_relu', local1_before_relu)
tf.summary.histogram('local1_weights', weight_local1)
tf.summary.histogram('local1_biases', bias_local1)
# local2
with tf.variable_scope('local2') as scope:
# Move everything into depth so we can perform a single matrix multiply.
weight_local2 = \
tf.get_variable(name='weight_local2', shape=[2046, 2046], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer_conv2d(uniform=False, dtype=tf.float32))
bias_local2 = tf.Variable(tf.constant(0.1, tf.float32, [2046]), trainable=True, name='bias_local2')
local2_before_relu = tf.matmul(local1, weight_local2) + bias_local2
local2 = tf.nn.relu(local2_before_relu, name=scope.name)
tf.summary.histogram('local2_output_distribution', local2)
tf.summary.histogram('local2_before_relu', local2_before_relu)
tf.summary.histogram('local2_weights', weight_local2)
tf.summary.histogram('local2_biases', bias_local2)
# linear Wx + b
with tf.variable_scope('softmax_linear') as scope:
weight_softmax = \
tf.Variable(
tf.truncated_normal([2046, n_classes], stddev=1 / 1024, dtype=tf.float32), name='weight_softmax')
bias_softmax = tf.Variable(tf.constant(0.0, tf.float32, [n_classes]), trainable=True, name='bias_softmax')
softmax_linear = tf.add(tf.matmul(local2, weight_softmax), bias_softmax, name=scope.name)
tf.summary.histogram('softmax_output_distribution', softmax_linear)
tf.summary.histogram('softmax_weights', weight_softmax)
tf.summary.histogram('softmax_biases', bias_softmax)
tf.summary.histogram('weights_conv1', weights['weights_conv1'])
tf.summary.histogram('weights_conv2', weights['weights_conv2'])
tf.summary.histogram('weights_conv3', weights['weights_conv3'])
tf.summary.histogram('weights_conv4', weights['weights_conv4'])
tf.summary.histogram('weights_conv5', weights['weights_conv5'])
tf.summary.histogram('biases_conv1', biases['bc1'])
tf.summary.histogram('biases_conv2', biases['bc2'])
tf.summary.histogram('biases_conv3', biases['bc3'])
tf.summary.histogram('biases_conv4', biases['bc4'])
tf.summary.histogram('biases_conv5', biases['bc5'])
return softmax_linear
# Note that this is the RMSE
with tf.name_scope('loss'):
# Note that the dimension of cost is [batch_size, 1]. Every example has one output and a batch
# is a number of examples.
cost = tf.sqrt(tf.square(tf.subtract(predictions, y_valence)))
cost_scalar = tf.reduce_mean(tf.multiply(cost, confidence_holder), reduction_indices=0)
# Till here cost_scolar will have the following shape: [[#num]]... That is why I used cost_scalar[0]
tf.summary.scalar("loss", cost_scalar[0])
with tf.name_scope('train'):
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost_scalar)
最佳答案
来自https://jhui.github.io/2017/03/12/TensorBoard-visualize-your-learning/
我认为分布只是用步长表示直方图的另一种方式。
我猜最中间的红线表示直方图的最大值,每四行的平均百分比除以每边0 25%50%75%
关于tensorflow - 解释Tensorboard分布-权重不变,仅偏差,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44490564/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!