gpt4 book ai didi

c++ - 如何使用 std::experimental::simd?

转载 作者:行者123 更新时间:2023-12-03 06:55:22 35 4
gpt4 key购买 nike

我试着做 github std::simd 上给出的例子但我的矢量化版本最终慢了 2-3 倍。如何正确使用?

documentary缺乏认真的文档和进一步的示例用法。没有列出构造函数等。我确定我可能以错误的方式使用它,但是由于文档有限,我不知道如何继续。

g++ -o test test.cpp --std=c++2a -O0


#include <array>
#include <chrono>
#include <cstdlib>
#include <experimental/simd>
#include <iostream>
#include <random>

using std::experimental::native_simd;
using Vec3D_v = std::array<native_simd<float>, 3>;
native_simd<float> scalar_product(const Vec3D_v& a, const Vec3D_v& b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
using Vec3D = std::array<float, 3>;
float scalar_product(const std::array<float, 3>& a, const std::array<float, 3>& b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}

int main(){
constexpr std::size_t VECREG_SIZE = native_simd<float>::size();
std::array<Vec3D, VECREG_SIZE * 1000> arr;
std::array<Vec3D_v, VECREG_SIZE * 1000> arr_v;
std::random_device rd;
std::mt19937 generator(rd());
std::uniform_real_distribution<float> distribution(0.f, 1.f);
for( std::size_t i = 0; i < arr.size(); ++i ){
arr[i] = {distribution(generator), distribution(generator), distribution(generator)};
arr_v[i] = {distribution(generator), distribution(generator), distribution(generator)};
}
float result = 0.f;
auto start = std::chrono::high_resolution_clock::now();
for( std::size_t i = 1; i < arr.size(); ++i ){
result += scalar_product(arr_v[i-1], arr_v[i])[0];
}
auto end = std::chrono::high_resolution_clock::now();
auto elapsed = end - start;
std::cout << "VC: " << elapsed.count() << '\n' << std::endl;

result = 0;
start = std::chrono::high_resolution_clock::now();
for( std::size_t i = 1; i < arr.size(); ++i ){
result += scalar_product(arr[i-1], arr[i]);
}
end = std::chrono::high_resolution_clock::now();
elapsed = end - start;
std::cout << "notVC: " << elapsed.count() << '\n';
return EXIT_SUCCESS;
}

最佳答案

问题一:使用 SIMD 指令时会产生初始成本。拿你的代码,循环三遍(我用 -O3 编译,然后打印 result 否则大部分代码会被删除):

$ ./test
VC: 37240 (result: 5986.1)
notVC: 18668 (result: 5983.29)
VC: 26177 (result: 5986.1)
notVC: 18516 (result: 5983.29)
VC: 25895 (result: 5986.1)
notVC: 18083 (result: 5983.29)
_v主循环的组装版本现在是:
    1840:       c5 fc 28 d5             vmovaps %ymm5,%ymm2
1844: c5 fc 28 28 vmovaps (%rax),%ymm5
1848: c5 fc 28 cc vmovaps %ymm4,%ymm1
184c: c5 fc 28 c3 vmovaps %ymm3,%ymm0
1850: c5 fc 28 60 20 vmovaps 0x20(%rax),%ymm4
1855: c5 fc 28 58 40 vmovaps 0x40(%rax),%ymm3
185a: 48 83 c0 60 add $0x60,%rax
185e: c5 d4 59 d2 vmulps %ymm2,%ymm5,%ymm2
1862: c4 e2 6d 98 cc vfmadd132ps %ymm4,%ymm2,%ymm1
1867: c4 e2 75 98 c3 vfmadd132ps %ymm3,%ymm1,%ymm0
186c: c5 ca 58 f0 vaddss %xmm0,%xmm6,%xmm6
1870: 48 39 d8 cmp %rbx,%rax
1873: 75 cb jne 1840 <main+0x6f0>
问题2:在循环的每一圈,你翻译 native_simd<float>结果变成 float通过使用 [0]运算符(operator)。这可能会产生可怕的后果——但编译器足够聪明,不会这样做,如上面的程序集所示。
问题三:正如我们所见, native只是指示编译器将值放入 SIMD 寄存器中。这样做并没有什么好处:这里的多数据方面在哪里?您想要做的是将您的 3D vector 打包到一个 SIMD 寄存器中,并重写您的循环以在一个组件中累积标量积的每个维度。最后,您将取所有组件的总和:
using std::experimental::fixed_size_simd;
using Vec3D_v = fixed_size_simd<float, 3>;

  for( std::size_t i = 1; i < arr.size(); ++i ){
result_v += arr_v[i-1] * arr_v[i];
}
float result = std::experimental::reduce (result_v);
运行这个,我们有:
$ ./test
VC: 14958 (result: 2274.7)
notVC: 5279 (result: 2274.7)
VC: 4718 (result: 2274.7)
notVC: 5177 (result: 2274.7)
VC: 4720 (result: 2274.7)
notVC: 5132 (result: 2274.7)
主循环的组装就是这么漂亮的一块:
    1588:       c5 f8 28 d0             vmovaps %xmm0,%xmm2
158c: c5 f8 28 00 vmovaps (%rax),%xmm0
1590: 48 83 c0 10 add $0x10,%rax
1594: c4 e2 79 b8 ca vfmadd231ps %xmm2,%xmm0,%xmm1
1599: 48 39 c3 cmp %rax,%rbx
159c: 75 ea jne 1588 <main+0x438>
在这里,每个 %xmm寄存器一次保存 3 个浮点值。此外,编译器大量优化第二个循环以使用 AVX 指令,因此增益并不是那么重要(但仍然存在!)。

完整代码:
#include <array>
#include <chrono>
#include <cstdlib>
#include <experimental/simd>
#include <iostream>
#include <random>

using std::experimental::fixed_size_simd;
using Vec3D_v = fixed_size_simd<float, 3>;

using Vec3D = std::array<float, 3>;
float scalar_product (const std::array<float, 3> &a, const std::array<float, 3> &b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}

int main () {
constexpr std::size_t VECREG_SIZE = fixed_size_simd<float, 3>::size ();
std::array<Vec3D, VECREG_SIZE * 1000> arr;
std::array<Vec3D_v, VECREG_SIZE * 1000> arr_v;
std::random_device rd;
std::mt19937 generator (rd ());
std::uniform_real_distribution<float> distribution (0.f, 1.f);

for (std::size_t i = 0; i < arr.size (); ++i) {
arr[i] = {distribution (generator), distribution (generator), distribution (generator) };

for (int j = 0; j < 3; ++j)
arr_v[i][j] = arr[i][j];
}

Vec3D_v result_v;

for (int iter = 0; iter < 3; ++iter) {

for (int j = 0; j < 3; ++j)
result_v[j] = 0.f;

auto start = std::chrono::high_resolution_clock::now ();

for (std::size_t i = 1; i < arr.size (); ++i) {
result_v += arr_v[i - 1] * arr_v[i];
}

float result = std::experimental::reduce (result_v);
auto end = std::chrono::high_resolution_clock::now ();
auto elapsed = end - start;
std::cout << "VC: " << elapsed.count () << " (result: " << result << ")" << std::endl;

result = 0;
start = std::chrono::high_resolution_clock::now ();

for (std::size_t i = 1; i < arr.size (); ++i) {
result += scalar_product (arr[i - 1], arr[i]);
}

end = std::chrono::high_resolution_clock::now ();
elapsed = end - start;
std::cout << "notVC: " << elapsed.count () << " (result: " << result << ")" << std::endl;
}

return EXIT_SUCCESS;
}

关于c++ - 如何使用 std::experimental::simd?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58584012/

35 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com