- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在编写一个独立的 Spark 程序,它从 Cassandra 获取数据。我按照示例并通过 newAPIHadoopRDD() 和 ColumnFamilyInputFormat 类创建了 RDD。RDD 已创建,但当我调用 RDD 的 .groupByKey() 方法时,出现 NotSerializedException:
public static void main(String[] args) {
SparkConf sparkConf = new SparkConf();
sparkConf.setMaster("local").setAppName("Test");
JavaSparkContext ctx = new JavaSparkContext(sparkConf);
Job job = new Job();
Configuration jobConf = job.getConfiguration();
job.setInputFormatClass(ColumnFamilyInputFormat.class);
ConfigHelper.setInputInitialAddress(jobConf, host);
ConfigHelper.setInputRpcPort(jobConf, port);
ConfigHelper.setOutputInitialAddress(jobConf, host);
ConfigHelper.setOutputRpcPort(jobConf, port);
ConfigHelper.setInputColumnFamily(jobConf, keySpace, columnFamily, true);
ConfigHelper.setInputPartitioner(jobConf,"Murmur3Partitioner");
ConfigHelper.setOutputPartitioner(jobConf,"Murmur3Partitioner");
SlicePredicate predicate = new SlicePredicate();
SliceRange sliceRange = new SliceRange();
sliceRange.setFinish(new byte[0]);
sliceRange.setStart(new byte[0]);
predicate.setSlice_range(sliceRange);
ConfigHelper.setInputSlicePredicate(jobConf, predicate);
JavaPairRDD<ByteBuffer, SortedMap<ByteBuffer, IColumn>> rdd =
spark.newAPIHadoopRDD(jobConf,
ColumnFamilyInputFormat.class.asSubclass(org.apache.hadoop.mapreduce.InputFormat.class),
ByteBuffer.class, SortedMap.class);
JavaPairRDD<ByteBuffer, Iterable<SortedMap<ByteBuffer, IColumn>>> groupRdd = rdd.groupByKey();
System.out.println(groupRdd.count());
}
异常(exception):
java.io.NotSerializableException: java.nio.HeapByteBuffer at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1164) at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1518) at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1483) at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1400) at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1158) at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:330) at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:42) at org.apache.spark.storage.DiskBlockObjectWriter.write(BlockObjectWriter.scala:179) at org.apache.spark.scheduler.ShuffleMapTask$$anonfun$runTask$1.apply(ShuffleMapTask.scala:161) at org.apache.spark.scheduler.ShuffleMapTask$$anonfun$runTask$1.apply(ShuffleMapTask.scala:158) at scala.collection.Iterator$class.foreach(Iterator.scala:727) at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:158) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99) at org.apache.spark.scheduler.Task.run(Task.scala:51) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:187) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:895) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:918) at java.lang.Thread.run(Thread.java:662)
我想做的是将所有行键列合并到一个条目中。当我尝试使用reduceByKey()方法时,我也遇到了同样的异常:
JavaPairRDD<ByteBuffer, SortedMap<ByteBuffer, IColumn>> reducedRdd = rdd.reduceByKey(
new Function2<SortedMap<ByteBuffer, IColumn>, SortedMap<ByteBuffer, IColumn>, sortedMap<ByteBuffer, IColumn>>() {
public SortedMap<ByteBuffer, IColumn> call(SortedMap<ByteBuffer, IColumn> arg0,
SortedMap<ByteBuffer, IColumn> arg1) throws Exception {
SortedMap<ByteBuffer, IColumn> sortedMap = new TreeMap<ByteBuffer, IColumn>(arg0.comparator());
sortedMap.putAll(arg0);
sortedMap.putAll(arg1);
return sortedMap;
}
}
);
我正在使用:
有谁知道问题出在哪里吗?序列化失败的原因是什么?
谢谢,
谢
最佳答案
您的问题可能是由于尝试序列化 ByteBuffers 引起的。它们不可序列化,您需要在生成 RDD 之前将它们转换为字节数组。
您应该尝试适用于 Spark 的官方 DataStax Cassandra 驱动程序,该驱动程序可用 here
关于cassandra - Apache Spark 与 Cassandra 行为,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/24411658/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!