gpt4 book ai didi

c++ - CUDA 中的并行批处理小矩阵不适用于 for 循环

转载 作者:行者123 更新时间:2023-12-03 06:53:34 26 4
gpt4 key购买 nike

我有一些(比如说一百万个)4 x 3 的小矩阵。我想用它们做几个简单的操作,我希望我的 CUDA 内核只并行化矩阵索引,(不是行/列操作).让我更好地解释一下:我将矩阵数组 A[MatrixNumb][row][col] 作为输入传递给我的 GPU 内核,我希望操作并行化仅在 MatrixNumb 上进行(因此我想强制操作在一个维度。为了简单起见,下面的示例仅使用 3 个矩阵。它编译并运行,但它给了我错误的结果。基本上,它返回的矩阵与我作为输入提供的矩阵相同。我不明白为什么以及我是否正在制作任何错误,我如何重写/思考代码?我也使用 CudaMallocManaged 编写代码,以便在主机和设备之间共享内存,但是它使用经典的 CudaMalloc 和使用 memcpy 给我相同的结果。

源.cpp

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <assert.h>
#include <chrono>
#include <random>
#include <time.h>
#include <math.h>

#include <cuda_runtime.h>
#include "device_launch_parameters.h"
#include <cuda.h>
#include <device_functions.h>

using namespace std;


__global__ void SVD(double*** a, const int m, const int n, const int numMatrices, double** w)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;

// I would like that each thread runs these loops independently
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
a[idx][i][j] = (a[idx][i][j] * a[idx][i][j]) * 3.14;
}
}
for (int j = 0; j < n; j++) {
w[idx][j] = 3.14 * a[idx][1][j]* a[idx][1][j];
}

}


int main()
{
const int n = 3;
const int m = 4;
const int lda = m;
const int numMatrices = 3;

random_device device;
mt19937 generator(device());
uniform_real_distribution<double> distribution(1., 5.);

// create pointers
double*** A = new double** [numMatrices];
double** w = new double* [numMatrices];

//ALLOCATE SHARED MEMORY
for (int nm = 0; nm < numMatrices; nm++) {
A[nm] = new double* [lda];
w[nm] = new double[n];

for (int i = 0; i < lda; i++) {
A[nm][i] = new double[n];

for (int j = 0; j < n; j++) {
cudaMallocManaged((void**)&A[nm][i][j], sizeof(double));
cudaMallocManaged((void**)&w[nm][j], sizeof(double));
}
}
}

cout << " memory allocated" << endl;


//FILL MATRICES INTO SHARED MEMORY
for (int nm = 0; nm < numMatrices; nm++) {
A[nm] = new double* [lda];
w[nm] = new double[n];

for (int i = 0; i < lda; i++) {
A[nm][i] = new double[n];

for (int j = 0; j < n; j++) {
A[nm][i][j] = distribution(generator);
w[nm][j] = 0.0;
}
}
}
cout << " matrix filled " << endl;


// PRINT MATRICES BEFORE CUDA OPERATION
for (int nm = 0; nm < numMatrices; nm++) {
for (int i = 0; i < lda; i++) {
for (int j = 0; j < n; j++) {
cout << A[nm][i][j] << " ";
}
cout << endl;
}
cout << endl;
}

//KERNEL ----------------------------------------------------------------------
int NThreads = 3;
int NBlocks = int(numMatrices / NThreads + 1);

SVD << <NBlocks, NThreads >> > (A, n, m, numMatrices, w);
cudaDeviceSynchronize();
cout << " Kernel done " << endl << endl;

cout << " --- GPU --- " << endl;
cout << " NEW MATRIX: " << endl;
for (int nm = 0; nm < numMatrices; nm++) {
for (int i = 0; i < lda; i++) {
for (int j = 0; j < n; j++) {
cout << A[nm][i][j] << " ";
}
cout << endl;
}
cout << endl;
}

cout << " NEW VECTOR RESULTS: " << endl;
for (int nm = 0; nm < numMatrices; nm++) {
for (int i = 0; i < n; i++) {
cout << w[nm][i] << " ";
}
cout << endl;
}

cout << endl;

//FREE THE DEVICE'S MEMORY -----------------------------------------------------
cudaFree(A);
cudaFree(w);
cout << " Cuda free " << endl << endl;

return 0;
}

我得到的(错误的)输出如下:

memory allocated
matrix filled
1.28689 3.76588 3.88649
1.52547 4.42371 2.62566
1.48002 3.33719 1.58413
3.78243 2.8394 3.0249

1.14322 1.70261 2.02784
2.86852 2.87918 3.2896
4.87268 3.52447 1.58414
3.52306 3.84931 3.18212

1.76397 1.41317 4.9765
1.63338 4.79316 2.64009
1.99873 1.72617 1.15974
1.18922 4.21513 1.6695

Kernel done

--- GPU ---
NEW MATRIX:
1.28689 3.76588 3.88649
1.52547 4.42371 2.62566
1.48002 3.33719 1.58413
3.78243 2.8394 3.0249

1.14322 1.70261 2.02784
2.86852 2.87918 3.2896
4.87268 3.52447 1.58414
3.52306 3.84931 3.18212

1.76397 1.41317 4.9765
1.63338 4.79316 2.64009
1.99873 1.72617 1.15974
1.18922 4.21513 1.6695

NEW VECTOR RESULTS:
0 0 0
0 0 0
0 0 0

Cuda free

我期望通过以下操作修改新矩阵和 vector :a[idx][i][j] = (a[idx][i][j] * a[idx][i][j]) * 3.14;但是,看起来代码没有看到内核或内核无法正常工作。

最佳答案

你有几个问题:

  1. 当使用具有双指针或三指针访问的托管内存时,树中的每个指针都必须使用托管分配器进行分配
  2. 您的分配方案层次太多,并且您将一些指针分配了两次(内存泄漏)。
  3. 您传递给内核的参数顺序与内核期望的参数顺序不匹配(nm 倒转)。
  4. 由于您可能会启动比必要更多的 block /线程,因此您的内核需要进行线程检查 (if-test)。
  5. 您的代码应该在 .cu 文件中,而不是 .cpp 文件中。

以下代码解决了上述问题,并且运行时似乎没有运行时错误。

$ cat t61.cu
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <assert.h>
#include <chrono>
#include <random>
#include <time.h>
#include <math.h>


using namespace std;


__global__ void SVD(double*** a, const int m, const int n, const int numMatrices, double** w)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < numMatrices){
// I would like that each thread runs these loops independently
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
a[idx][i][j] = (a[idx][i][j] * a[idx][i][j]) * 3.14;
}
}
for (int j = 0; j < n; j++) {
w[idx][j] = 3.14 * a[idx][1][j]* a[idx][1][j];
}
}
}


int main()
{
const int n = 3;
const int m = 4;
const int lda = m;
const int numMatrices = 3;

random_device device;
mt19937 generator(device());
uniform_real_distribution<double> distribution(1., 5.);

// create pointers
double*** A;
cudaMallocManaged(&A, sizeof(double**)*numMatrices);
double** w;
cudaMallocManaged(&w, sizeof(double*)* numMatrices);

//ALLOCATE SHARED MEMORY
for (int nm = 0; nm < numMatrices; nm++) {
cudaMallocManaged(&(A[nm]), sizeof(double*)*lda);
cudaMallocManaged(&(w[nm]), sizeof(double)*n);

for (int i = 0; i < lda; i++) {
cudaMallocManaged(&(A[nm][i]), sizeof(double)*n);
}
}

cout << " memory allocated" << endl;


//FILL MATRICES INTO SHARED MEMORY
for (int nm = 0; nm < numMatrices; nm++) {
for (int i = 0; i < lda; i++) {
for (int j = 0; j < n; j++) {
A[nm][i][j] = distribution(generator);
w[nm][j] = 0.0;
}
}
}
cout << " matrix filled " << endl;


// PRINT MATRICES BEFORE CUDA OPERATION
for (int nm = 0; nm < numMatrices; nm++) {
for (int i = 0; i < lda; i++) {
for (int j = 0; j < n; j++) {
cout << A[nm][i][j] << " ";
}
cout << endl;
}
cout << endl;
}

//KERNEL ----------------------------------------------------------------------
int NThreads = 3;
int NBlocks = int(numMatrices / NThreads + 1);

SVD << <NBlocks, NThreads >> > (A, m, n, numMatrices, w);
cudaDeviceSynchronize();
cout << " Kernel done " << endl << endl;

cout << " --- GPU --- " << endl;
cout << " NEW MATRIX: " << endl;
for (int nm = 0; nm < numMatrices; nm++) {
for (int i = 0; i < lda; i++) {
for (int j = 0; j < n; j++) {
cout << A[nm][i][j] << " ";
}
cout << endl;
}
cout << endl;
}

cout << " NEW VECTOR RESULTS: " << endl;
for (int nm = 0; nm < numMatrices; nm++) {
for (int i = 0; i < n; i++) {
cout << w[nm][i] << " ";
}
cout << endl;
}

cout << endl;

//FREE THE DEVICE'S MEMORY -----------------------------------------------------
cudaFree(A);
cudaFree(w);
cout << " Cuda free " << endl << endl;

return 0;
}
$ nvcc -o t61 t61.cu
$ cuda-memcheck ./t61
========= CUDA-MEMCHECK
memory allocated
matrix filled
3.73406 3.51919 3.249
1.52374 2.678 2.50944
3.67358 1.15831 3.26327
2.58468 1.49937 2.67133

1.72144 2.99183 3.11156
1.06247 3.34983 4.23568
3.49749 3.07641 3.42827
4.09607 2.00557 2.12049

3.65427 3.98966 4.73428
1.68397 4.3746 2.95533
2.1914 4.96086 1.7165
3.10095 2.61781 4.52626

Kernel done

--- GPU ---
NEW MATRIX:
43.7816 38.888 33.1458
7.29041 22.5191 19.7735
42.375 4.2129 33.4376
20.977 7.05908 22.407

9.30494 28.1062 30.4008
3.54453 35.2351 56.3348
38.41 29.7179 36.9045
52.6821 12.6301 14.1189

41.9306 49.9807 70.3782
8.90432 60.0905 27.4247
15.079 77.2757 9.25165
30.1939 21.5182 64.3294

NEW VECTOR RESULTS:
166.891 1592.32 1227.71
39.4501 3898.35 9965.14
248.961 11338.1 2361.64

Cuda free

========= ERROR SUMMARY: 0 errors
$

关于c++ - CUDA 中的并行批处理小矩阵不适用于 for 循环,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64414577/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com