- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
依赖类型经常被宣传为一种使您能够断言程序在规范范围内正确的方法。因此,例如,您被要求编写一个对列表进行排序的代码 - 您可以通过将“排序”的概念编码为类型并编写一个函数来证明代码是正确的如列出a -> SortedList a
。但是如何证明 SortedList
规范是正确的呢?难道不是这样吗:您的规范越复杂,您对该规范作为类型的编码就越有可能不正确吗?
最佳答案
这是 How do you tell that your tests are correct? 的静态类型系统版本
我能诚实给出的唯一答案是,是的,你的规范越复杂和笨拙,你就越有可能犯错误。您可能会以类型论形式主义编写某些内容,就像将程序的描述形式化为可执行函数一样。
希望您的规范足够简单且足够小,可以通过检查来判断,而您的实现可能会大得多。它的帮助是,一旦你有了一些正式的“种子”想法,你就可以证明从中衍生的想法是正确的。从这个角度来看,您越容易从更简单的部分机械地、可证明地派生出规范的各个部分,并最终从规范中派生出您的实现,您就越有可能获得正确的实现。
但是如何形式化某些东西可能并不清楚,这会导致你在将你的想法转化为形式主义时可能会犯错误 - 你可能 think you proved one thing, when actually you proved another – 或者您可能会发现自己正在进行类型理论研究以形式化一个想法。
关于haskell - 依赖类型可以证明您的代码在规范范围内是正确的。但如何证明该规范是正确的呢?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33065965/
(这不是关于定理证明,而是关于实践中的测试,例如 quickCheck) 让f一些通用函数 f :: RESTRICTIONS => GENERICS 具有一些“理想的”属性(即不是 hack,是不可
给定数组 arr 和索引数组 ind,以下算法就地重新排列 arr 以满足给定的索引: function swap(arr, i, k) { var temp = arr[i]; arr[i]
我有兴趣创建一个具有运行时间和空间限制的简单数组问题。看来我找到了解决问题的方法。请阅读以下java代码中问题的初始描述注释: /* * Problem: Given two integer ar
我是 isabelle 的新手,并试图证明以下简单的不等式: lemma ineq: "(a::real) > 0 ⟹ a 0 ⟹ b 0" proof have "1/a + 1/b >
是否有任何理论说缓存应该比文件系统更快? 我认为,由于文件系统也使用缓存,因此没有科学证据表明当文件系统的概念有些松散时,我们应该将内容从文件系统移动到诸如 memcache 之类的缓存中——比如下载
我正在做一个证明,我的一个子目标看起来有点像这样: Goal forall (a b : bool) (p: Prop) (H1: p -> a = b) (H2: p), neg
我有定义的归纳类型: Inductive InL (A:Type) (y:A) : list A -> Prop := | InHead : forall xs:list A, InL y (co
我知道 CRC 是一个线性函数,这意味着 CRC(x xor y) = CRC(x) xor CRC(y),但我不知道如何证明 CRC 的这个属性。 有谁有想法吗? 非常感谢! 最佳答案 这通常不是真
我是 Coq 的初学者。 虽然计算机为我验证了证明令人满意,但众所周知,满足 Coq 的证明对人类来说难以阅读。这是一个简单的例子,假设您没有看到任何评论: Theorem add_comm : fo
我试图了解是什么决定了类型参数是否必须是标称的。 虽然 GADT 和类型家族在某种意义上看起来不同,但它们不是“简单容器”,因为它们的实例定义可以“查看”它们的参数,但简单类型是否可以明显需要名义参数
我想使用 function 关键字定义来证明函数定义的正确性。以下是自然数的通常归纳定义上的加法函数的定义: theory FunctionDefinition imports Main begin
我定义了一个 Sygma-Type,如下所示: { R : nat -> nat -> bool | Reflexive R } 我有两个元素 r1 r2 : { R : nat -> nat ->
我有以下数据: new_pairs x y Freq start.latittude start.longitude start.station end.la
出于教育目的,我一直试图通过使用各种语言扩展和单例类型,在 Haskell 中重建《Type-Driven Development with Idris》(即 RemoveElem.idr )一书中的
我定义了一个 Sygma-Type,如下所示: { R : nat -> nat -> bool | Reflexive R } 我有两个元素 r1 r2 : { R : nat -> nat ->
我正在使用Ax DevTools,并且试图弄清楚如何使用相同的构建信息标记多个扫描。现在,我的测试运行如下: class MyTestCase : XCTestCase { func myTest
我正在尝试证明一个函数的正确性,该函数检查数组是否按递增/递减顺序排序或未排序。行为是返回 -1,如果按降序排序,1,如果按升序排序,大小为 1,或包含相同的值,0,如果没有已排序或为空。运行:Fra
我试图证明 Z3(Microsoft 的 SMT 求解器)中的一个归纳事实。我知道 Z3 通常不提供此功能,如 Z3 guide 中所述。 (第 8 节:数据类型),但是当我们限制要证明事实的域时,这
问题已编辑: 如代码中所述,HashSet 和 HashMap 是快速失败的(但这不是保证): void goHashSet() { Set set = new HashSet();
我试图使导航栏中的链接延伸到导航栏的全长。我环顾四周,发现了一些有用的信息,但无法使其正常工作 HTML: To
我是一名优秀的程序员,十分优秀!