gpt4 book ai didi

python - 尝试使用之前训练的 tf.keras 模型作为预训练,但得到“ValueError : Input 0 of layer dense_3 is incompatible with the laye

转载 作者:行者123 更新时间:2023-12-03 06:12:39 24 4
gpt4 key购买 nike

我创建并训练了一个模型,用于根据编码为字符整数序列的发票字符串对啤酒名称进行分类。

batch_size = 512  # Batch size for training.
epochs = 5 # Number of epochs to train for.

model = Sequential()
model.add(Dense(512, activation='relu'))
model.add(Dropout(rate=0.2, noise_shape=None, seed=None))
model.add(Dense(512, activation='relu'))
model.add(Dropout(rate=0.2, noise_shape=None, seed=None))
model.add(Dense(train_beer['product_name'].nunique(), activation='softmax'))

optimizer = RMSprop(learning_rate=0.001)
model.compile(loss=tf.keras.losses.CategoricalCrossentropy(), optimizer=optimizer, metrics=['accuracy'])
model.fit(train_encoded, train_labels, epochs=epochs, batch_size=batch_size, validation_data=(test_encoded,test_labels))

现在我想使用前两层作为另一个模型的预训练,因此我删除了激活层并添加了一个新层并重新编译模型。 (请注意,出于测试目的,我重新添加了相同的图层

model.pop()
model.add(Dense(train_beer['product_name'].nunique(), activation='softmax'))
optimizer = RMSprop(learning_rate=0.001)
model.compile(loss=tf.keras.losses.CategoricalCrossentropy(), optimizer=optimizer, metrics=['accuracy'])
batch_size = 512 # Batch size for training.
epochs = 5 # Number of epochs to train for.

model.fit(train_encoded, train_labels, epochs=epochs, batch_size=batch_size, validation_data=(test_encoded,test_labels))

但我收到错误:

 Train on 313213 samples, validate on 16323 samples Epoch 1/5    512/313213 [..............................] - ETA: 29s
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-13-e341e0cd9a82> in <module>
2 epochs = 5 # Number of epochs to train for.
3
----> 4 model.fit(train_encoded, train_labels, epochs=epochs, batch_size=batch_size, validation_data=(test_encoded,test_labels))

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing,
**kwargs)
726 max_queue_size=max_queue_size,
727 workers=workers,
--> 728 use_multiprocessing=use_multiprocessing)
729
730 def evaluate(self,

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py in fit(self, model, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, **kwargs)
322 mode=ModeKeys.TRAIN,
323 training_context=training_context,
--> 324 total_epochs=epochs)
325 cbks.make_logs(model, epoch_logs, training_result, ModeKeys.TRAIN)
326

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py in run_one_epoch(model, iterator, execution_function, dataset_size, batch_size, strategy, steps_per_epoch, num_samples, mode, training_context, total_epochs)
121 step=step, mode=mode, size=current_batch_size) as batch_logs:
122 try:
--> 123 batch_outs = execution_function(iterator)
124 except (StopIteration, errors.OutOfRangeError):
125 # TODO(kaftan): File bug about tf function and errors.OutOfRangeError?

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py in execution_function(input_fn)
84 # `numpy` translates Tensors to values in Eager mode.
85 return nest.map_structure(_non_none_constant_value,
---> 86 distributed_function(input_fn))
87
88 return execution_function

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\eager\def_function.py in __call__(self, *args, **kwds)
455
456 tracing_count = self._get_tracing_count()
--> 457 result = self._call(*args, **kwds)
458 if tracing_count == self._get_tracing_count():
459 self._call_counter.called_without_tracing()

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\eager\def_function.py in _call(self, *args, **kwds)
501 # This is the first call of __call__, so we have to initialize.
502 initializer_map = object_identity.ObjectIdentityDictionary()
--> 503 self._initialize(args, kwds, add_initializers_to=initializer_map)
504 finally:
505 # At this point we know that the initialization is complete (or less

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\eager\def_function.py in _initialize(self, args, kwds, add_initializers_to)
406 self._concrete_stateful_fn = (
407 self._stateful_fn._get_concrete_function_internal_garbage_collected(
# pylint: disable=protected-access
--> 408 *args, **kwds))
409
410 def invalid_creator_scope(*unused_args, **unused_kwds):

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\eager\function.py in _get_concrete_function_internal_garbage_collected(self, *args,
**kwargs) 1846 if self.input_signature: 1847 args, kwargs = None, None
-> 1848 graph_function, _, _ = self._maybe_define_function(args, kwargs) 1849 return graph_function 1850

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\eager\function.py in _maybe_define_function(self, args, kwargs) 2148 graph_function = self._function_cache.primary.get(cache_key, None) 2149 if graph_function is None:
-> 2150 graph_function = self._create_graph_function(args, kwargs) 2151 self._function_cache.primary[cache_key] = graph_function 2152 return graph_function, args, kwargs

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\eager\function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes) 2039 arg_names=arg_names, 2040 override_flat_arg_shapes=override_flat_arg_shapes,
-> 2041 capture_by_value=self._capture_by_value), 2042 self._function_attributes, 2043 # Tell the ConcreteFunction to clean up its graph once it goes out of

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\framework\func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
913 converted_func)
914
--> 915 func_outputs = python_func(*func_args, **func_kwargs)
916
917 # invariant: `func_outputs` contains only Tensors, CompositeTensors,

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\eager\def_function.py in wrapped_fn(*args, **kwds)
356 # __wrapped__ allows AutoGraph to swap in a converted function. We give
357 # the function a weak reference to itself to avoid a reference cycle.
--> 358 return weak_wrapped_fn().__wrapped__(*args, **kwds)
359 weak_wrapped_fn = weakref.ref(wrapped_fn)
360

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py in distributed_function(input_iterator)
71 strategy = distribution_strategy_context.get_strategy()
72 outputs = strategy.experimental_run_v2(
---> 73 per_replica_function, args=(model, x, y, sample_weights))
74 # Out of PerReplica outputs reduce or pick values to return.
75 all_outputs = dist_utils.unwrap_output_dict(

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\distribute\distribute_lib.py in experimental_run_v2(self, fn, args, kwargs)
758 fn = autograph.tf_convert(fn, ag_ctx.control_status_ctx(),
759 convert_by_default=False)
--> 760 return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
761
762 def reduce(self, reduce_op, value, axis):

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\distribute\distribute_lib.py in call_for_each_replica(self, fn, args, kwargs) 1785 kwargs
= {} 1786 with self._container_strategy().scope():
-> 1787 return self._call_for_each_replica(fn, args, kwargs) 1788 1789 def _call_for_each_replica(self, fn, args, kwargs):

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\distribute\distribute_lib.py in _call_for_each_replica(self, fn, args, kwargs) 2130 self._container_strategy(), 2131 replica_id_in_sync_group=constant_op.constant(0, dtypes.int32)):
-> 2132 return fn(*args, **kwargs) 2133 2134 def _reduce_to(self, reduce_op, value, destinations):

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\autograph\impl\api.py in wrapper(*args, **kwargs)
290 def wrapper(*args, **kwargs):
291 with ag_ctx.ControlStatusCtx(status=ag_ctx.Status.DISABLED):
--> 292 return func(*args, **kwargs)
293
294 if inspect.isfunction(func) or inspect.ismethod(func):

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py in train_on_batch(model, x, y, sample_weight, class_weight, reset_metrics)
262 y,
263 sample_weights=sample_weights,
--> 264 output_loss_metrics=model._output_loss_metrics)
265
266 if reset_metrics:

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\keras\engine\training_eager.py in train_on_batch(model, inputs, targets, sample_weights, output_loss_metrics)
309 sample_weights=sample_weights,
310 training=True,
--> 311 output_loss_metrics=output_loss_metrics))
312 if not isinstance(outs, list):
313 outs = [outs]

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\keras\engine\training_eager.py in _process_single_batch(model, inputs, targets, output_loss_metrics, sample_weights, training)
250 output_loss_metrics=output_loss_metrics,
251 sample_weights=sample_weights,
--> 252 training=training))
253 if total_loss is None:
254 raise ValueError('The model cannot be run '

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\keras\engine\training_eager.py in _model_loss(model, inputs, targets, output_loss_metrics, sample_weights, training)
125 inputs = nest.map_structure(ops.convert_to_tensor, inputs)
126
--> 127 outs = model(inputs, **kwargs)
128 outs = nest.flatten(outs)
129

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py in __call__(self, inputs, *args, **kwargs)
845 outputs = base_layer_utils.mark_as_return(outputs, acd)
846 else:
--> 847 outputs = call_fn(cast_inputs, *args, **kwargs)
848
849 except errors.OperatorNotAllowedInGraphError as e:

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\keras\engine\sequential.py in call(self, inputs, training, mask)
268 kwargs['training'] = training
269
--> 270 outputs = layer(inputs, **kwargs)
271
272 # `outputs` will be the inputs to the next layer.

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py in __call__(self, inputs, *args, **kwargs)
810 # are casted, not before.
811 input_spec.assert_input_compatibility(self.input_spec, inputs,
--> 812 self.name)
813 graph = backend.get_graph()
814 with graph.as_default(), backend.name_scope(self._name_scope()):

~\.conda\envs\fintech_ml\lib\site-packages\tensorflow_core\python\keras\engine\input_spec.py in assert_input_compatibility(input_spec, inputs, layer_name)
211 ' incompatible with the layer: expected axis ' + str(axis) +
212 ' of input shape to have value ' + str(value) +
--> 213 ' but received input with shape ' + str(shape))
214 # Check shape.
215 if spec.shape is not None:

ValueError: Input 0 of layer dense_3 is incompatible with the layer: expected axis -1 of input shape to have value 6022 but received input with shape [None, 512]

最佳答案

我无法真正告诉你为什么会发生这种情况(我可能必须查看源代码)。我怀疑这些层在某处被错误地重新连​​接。但您可以执行以下操作来使其正常工作。

new_model = Sequential()
for l in model.layers[:-1]:
new_model.add(l)
new_model.add(Dense(100, activation='softmax'))

关于python - 尝试使用之前训练的 tf.keras 模型作为预训练,但得到“ValueError : Input 0 of layer dense_3 is incompatible with the laye,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59864710/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com