gpt4 book ai didi

r - 如何修复 R2jags::jags 中的 'Node inconsistent with parents'

转载 作者:行者123 更新时间:2023-12-03 06:03:40 28 4
gpt4 key购买 nike

我正在使用 R 包 R2jags。运行下面附加的代码后,R 生成错误消息:“节点与父节点不一致”。

我试图解决这个问题。但是,错误消息仍然存在。我使用的变量是:

i) “Adop”:0-1 虚拟变量。

ii) “NumInfo”:计数器变量,范围为 {0, 1, 2,...}。

iii)“价格”:5

iv) “NRows”:326。

install.packages("R2jags")
library(R2jags)

# Data you need to run the model.
# Adop: a 0-1 dummy variable.
Adop <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

# NumInfo: a counter variable.
NumInfo <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1)

# NRows: length of both 'NumInfo' and 'Adop'.
NRows <- length(NumInfo)

# Price: 5
Price <- 5

Data <- list("NRows" = NRows, "Adop" = Adop, "NumInfo" = NumInfo, "Price" = Price)

# The Bayesian model. The parameters I would like to infer are: 'mu.m', 'tau2.m', 'r.s', 'lambda.s', 'k', 'c', and 'Sig2'.
# I would like to obtain samples from the posterior distribution of the vector of parameters.

Bayesian_Model <- "model {
mu.m ~ dnorm(0, 1)
tau2.m ~ dgamma(1, 1)
r.s ~ dgamma(1, 1)
lambda.s ~ dgamma(1, 1)
k ~ dunif(1, 1/Price)
c ~ dgamma(1, 1)
Sig2 ~ dgamma(1, 1)

precision.m <- 1/tau2.m
m ~ dnorm(mu.m, precision.m)
s2 ~ dgamma(r.s, lambda.s)

for(i in 1:NRows){
Media[i] <- NumInfo[i]/Sig2 * m
Var[i] <- equals(NumInfo[i], 0) * 10 + (1 - equals(NumInfo[i], 0)) * NumInfo[i]/Sig2 * s2 * (NumInfo[i]/Sig2 + 1/s2)
Prec[i] <- pow(Var[i], -1)
W[i] ~ dnorm(Media[i], Prec[i])
PrAd1[i] <- 1 - step(-m/s2 - 1/c * 1/s2 * log(1 - k * Price) + 1/2 * c)
PrAd2[i] <- 1 - step(-W[i] - m/s2 - 1/c * 1/s2 * log(1 - k * Price) + 1/2 * c - 1/c * log(1 - k * Price))
PrAd[i] <- equals(NumInfo[i], 0) * PrAd1[i] + (1 - equals(NumInfo[i], 0)) * PrAd2[i]
Adop[i] ~ dbern(PrAd[i])
}
}"

# Save the Bayesian model in your computer with an extension '.bug'.
# Suppose that you saved the .bug file in: "C:/Users/Default/Bayesian_Model.bug".
writeLines(Bayesian_Model, "C:/Users/Default/Bayesian_Model.bug")

# Here I would like to use jags command from R-package called R2jags.
# I would like to generate 1000 iterations.
MCMC_Bayesian_Model <- R2jags::jags(
model.file = "C:/Users/Default/Bayesian_Model.bug",
data = Data,
n.chains = 1,
n.iter = 1000,
parameters.to.save = c("mu.m", "tau2.m", "r.s", "lambda.s", "k", "c", "Sig2")
)

运行代码时,R 产生错误消息:“节点与父节点不一致”。我不知道有什么错误。我想知道你是否能帮我解决这个问题。如果您需要更多信息,请告诉我。非常感谢。

最佳答案

在不知道自己要做什么的情况下弄清楚模型有点困难,但我建议进行两个修复:

  1. 而不是 k ~ dunif(1, 1/Price) ,您的意思是 k ~ dunif(0, 1/Price) ?对于 dunif(a, b) ,你必须有a < b (参见第 48 页:http://people.stat.sc.edu/hansont/stat740/jags_user_manual.pdf)。

  2. 我在模型中插入了一条附加线,

    PrAd01[i] <- max(min(PrAd[i], 0.99), 0.01)

    并将最后一行更改为

    Adop[i] ~ dbern(PrAd01[i])

    上述手册第 49 页指出 0 < p < 1对于 dbern(p) .

模型在进行上述两项更改后运行。

关于r - 如何修复 R2jags::jags 中的 'Node inconsistent with parents',我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55881126/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com