- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
如何查询具有复杂类型(例如映射/数组)的 RDD?例如,当我编写这个测试代码时:
case class Test(name: String, map: Map[String, String])
val map = Map("hello" -> "world", "hey" -> "there")
val map2 = Map("hello" -> "people", "hey" -> "you")
val rdd = sc.parallelize(Array(Test("first", map), Test("second", map2)))
我认为语法会是这样的:
sqlContext.sql("SELECT * FROM rdd WHERE map.hello = world")
或
sqlContext.sql("SELECT * FROM rdd WHERE map[hello] = world")
但我明白了
Can't access nested field in type MapType(StringType,StringType,true)
和
org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Unresolved attributes
分别。
最佳答案
这取决于列的类型。让我们从一些虚拟数据开始:
import org.apache.spark.sql.functions.{udf, lit}
import scala.util.Try
case class SubRecord(x: Int)
case class ArrayElement(foo: String, bar: Int, vals: Array[Double])
case class Record(
an_array: Array[Int], a_map: Map[String, String],
a_struct: SubRecord, an_array_of_structs: Array[ArrayElement])
val df = sc.parallelize(Seq(
Record(Array(1, 2, 3), Map("foo" -> "bar"), SubRecord(1),
Array(
ArrayElement("foo", 1, Array(1.0, 2.0, 2.0)),
ArrayElement("bar", 2, Array(3.0, 4.0, 5.0)))),
Record(Array(4, 5, 6), Map("foz" -> "baz"), SubRecord(2),
Array(ArrayElement("foz", 3, Array(5.0, 6.0)),
ArrayElement("baz", 4, Array(7.0, 8.0))))
)).toDF
df.registerTempTable("df")
df.printSchema
// root
// |-- an_array: array (nullable = true)
// | |-- element: integer (containsNull = false)
// |-- a_map: map (nullable = true)
// | |-- key: string
// | |-- value: string (valueContainsNull = true)
// |-- a_struct: struct (nullable = true)
// | |-- x: integer (nullable = false)
// |-- an_array_of_structs: array (nullable = true)
// | |-- element: struct (containsNull = true)
// | | |-- foo: string (nullable = true)
// | | |-- bar: integer (nullable = false)
// | | |-- vals: array (nullable = true)
// | | | |-- element: double (containsNull = false)
数组(ArrayType
)列:
Column.getItem
方法
df.select($"an_array".getItem(1)).show
// +-----------+
// |an_array[1]|
// +-----------+
// | 2|
// | 5|
// +-----------+
Hive 括号语法:
sqlContext.sql("SELECT an_array[1] FROM df").show
// +---+
// |_c0|
// +---+
// | 2|
// | 5|
// +---+
UDF
val get_ith = udf((xs: Seq[Int], i: Int) => Try(xs(i)).toOption)
df.select(get_ith($"an_array", lit(1))).show
// +---------------+
// |UDF(an_array,1)|
// +---------------+
// | 2|
// | 5|
// +---------------+
除了上面列出的方法之外,Spark 支持越来越多的对复杂类型进行操作的内置函数。值得注意的示例包括高阶函数,例如 transform
(SQL 2.4+、Scala 3.0+、PySpark/SparkR 3.1+):
df.selectExpr("transform(an_array, x -> x + 1) an_array_inc").show
// +------------+
// |an_array_inc|
// +------------+
// | [2, 3, 4]|
// | [5, 6, 7]|
// +------------+
import org.apache.spark.sql.functions.transform
df.select(transform($"an_array", x => x + 1) as "an_array_inc").show
// +------------+
// |an_array_inc|
// +------------+
// | [2, 3, 4]|
// | [5, 6, 7]|
// +------------+
过滤器
(SQL 2.4+、Scala 3.0+、Python/SparkR 3.1+)
df.selectExpr("filter(an_array, x -> x % 2 == 0) an_array_even").show
// +-------------+
// |an_array_even|
// +-------------+
// | [2]|
// | [4, 6]|
// +-------------+
import org.apache.spark.sql.functions.filter
df.select(filter($"an_array", x => x % 2 === 0) as "an_array_even").show
// +-------------+
// |an_array_even|
// +-------------+
// | [2]|
// | [4, 6]|
// +-------------+
聚合
(SQL 2.4+、Scala 3.0+、PySpark/SparkR 3.1+):
df.selectExpr("aggregate(an_array, 0, (acc, x) -> acc + x, acc -> acc) an_array_sum").show
// +------------+
// |an_array_sum|
// +------------+
// | 6|
// | 15|
// +------------+
import org.apache.spark.sql.functions.aggregate
df.select(aggregate($"an_array", lit(0), (x, y) => x + y) as "an_array_sum").show
// +------------+
// |an_array_sum|
// +------------+
// | 6|
// | 15|
// +------------+
数组处理函数 (array_*
),例如 array_distinct
(2.4+):
import org.apache.spark.sql.functions.array_distinct
df.select(array_distinct($"an_array_of_structs.vals"(0))).show
// +-------------------------------------------+
// |array_distinct(an_array_of_structs.vals[0])|
// +-------------------------------------------+
// | [1.0, 2.0]|
// | [5.0, 6.0]|
// +-------------------------------------------+
array_max
(array_min
,2.4+):
import org.apache.spark.sql.functions.array_max
df.select(array_max($"an_array")).show
// +-------------------+
// |array_max(an_array)|
// +-------------------+
// | 3|
// | 6|
// +-------------------+
展平
(2.4+)
import org.apache.spark.sql.functions.flatten
df.select(flatten($"an_array_of_structs.vals")).show
// +---------------------------------+
// |flatten(an_array_of_structs.vals)|
// +---------------------------------+
// | [1.0, 2.0, 2.0, 3...|
// | [5.0, 6.0, 7.0, 8.0]|
// +---------------------------------+
arrays_zip
(2.4+):
import org.apache.spark.sql.functions.arrays_zip
df.select(arrays_zip($"an_array_of_structs.vals"(0), $"an_array_of_structs.vals"(1))).show(false)
// +--------------------------------------------------------------------+
// |arrays_zip(an_array_of_structs.vals[0], an_array_of_structs.vals[1])|
// +--------------------------------------------------------------------+
// |[[1.0, 3.0], [2.0, 4.0], [2.0, 5.0]] |
// |[[5.0, 7.0], [6.0, 8.0]] |
// +--------------------------------------------------------------------+
array_union
(2.4+):
import org.apache.spark.sql.functions.array_union
df.select(array_union($"an_array_of_structs.vals"(0), $"an_array_of_structs.vals"(1))).show
// +---------------------------------------------------------------------+
// |array_union(an_array_of_structs.vals[0], an_array_of_structs.vals[1])|
// +---------------------------------------------------------------------+
// | [1.0, 2.0, 3.0, 4...|
// | [5.0, 6.0, 7.0, 8.0]|
// +---------------------------------------------------------------------+
切片
(2.4+):
import org.apache.spark.sql.functions.slice
df.select(slice($"an_array", 2, 2)).show
// +---------------------+
// |slice(an_array, 2, 2)|
// +---------------------+
// | [2, 3]|
// | [5, 6]|
// +---------------------+
map (MapType
)列
使用Column.getField
方法:
df.select($"a_map".getField("foo")).show
// +----------+
// |a_map[foo]|
// +----------+
// | bar|
// | null|
// +----------+
使用 Hive 括号语法:
sqlContext.sql("SELECT a_map['foz'] FROM df").show
// +----+
// | _c0|
// +----+
// |null|
// | baz|
// +----+
使用带点语法的完整路径:
df.select($"a_map.foo").show
// +----+
// | foo|
// +----+
// | bar|
// |null|
// +----+
使用 UDF
val get_field = udf((kvs: Map[String, String], k: String) => kvs.get(k))
df.select(get_field($"a_map", lit("foo"))).show
// +--------------+
// |UDF(a_map,foo)|
// +--------------+
// | bar|
// | null|
// +--------------+
map_*
函数的数量不断增加,例如 map_keys
(2.3+)
import org.apache.spark.sql.functions.map_keys
df.select(map_keys($"a_map")).show
// +---------------+
// |map_keys(a_map)|
// +---------------+
// | [foo]|
// | [foz]|
// +---------------+
或map_values
(2.3+)
import org.apache.spark.sql.functions.map_values
df.select(map_values($"a_map")).show
// +-----------------+
// |map_values(a_map)|
// +-----------------+
// | [bar]|
// | [baz]|
// +-----------------+
请查看SPARK-23899获取详细列表。
使用带点语法的完整路径的结构 (StructType
) 列:
使用 DataFrame API
df.select($"a_struct.x").show
// +---+
// | x|
// +---+
// | 1|
// | 2|
// +---+
使用原始 SQL
sqlContext.sql("SELECT a_struct.x FROM df").show
// +---+
// | x|
// +---+
// | 1|
// | 2|
// +---+
可以使用点语法、名称和标准Column
方法访问结构
数组内的字段:
df.select($"an_array_of_structs.foo").show
// +----------+
// | foo|
// +----------+
// |[foo, bar]|
// |[foz, baz]|
// +----------+
sqlContext.sql("SELECT an_array_of_structs[0].foo FROM df").show
// +---+
// |_c0|
// +---+
// |foo|
// |foz|
// +---+
df.select($"an_array_of_structs.vals".getItem(1).getItem(1)).show
// +------------------------------+
// |an_array_of_structs.vals[1][1]|
// +------------------------------+
// | 4.0|
// | 8.0|
// +------------------------------+
可以使用 UDF 访问用户定义类型 (UDT) 字段。请参阅Spark SQL referencing attributes of UDT了解详情。
注释:
HiveContext
中使用。 UDF 应独立于标准 SQLContext
和 HiveContext
的版本而工作。一般来说,嵌套值是二等公民。嵌套字段并不支持所有典型操作。根据上下文,最好扁平化架构和/或分解集合
df.select(explode($"an_array_of_structs")).show
// +--------------------+
// | col|
// +--------------------+
// |[foo,1,WrappedArr...|
// |[bar,2,WrappedArr...|
// |[foz,3,WrappedArr...|
// |[baz,4,WrappedArr...|
// +--------------------+
点语法可以与通配符 (*
) 结合使用来选择(可能是多个)字段,而无需显式指定名称:
df.select($"a_struct.*").show
// +---+
// | x|
// +---+
// | 1|
// | 2|
// +---+
可以使用 get_json_object
和 from_json
函数查询 JSON 列。请参阅How to query JSON data column using Spark DataFrames?了解详情。
关于sql - 使用复杂类型查询 Spark SQL DataFrame,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/28332494/
我有三张 table 。表 A 有选项名称(即颜色、尺寸)。表 B 有选项值名称(即蓝色、红色、黑色等)。表C通过将选项名称id和选项名称值id放在一起来建立关系。 我的查询需要显示值和选项的名称,而
在mysql中,如何计算一行中的非空单元格?我只想计算某些列之间的单元格,比如第 3-10 列之间的单元格。不是所有的列...同样,仅在该行中。 最佳答案 如果你想这样做,只能在 sql 中使用名称而
关闭。这个问题需要多问focused 。目前不接受答案。 想要改进此问题吗?更新问题,使其仅关注一个问题 editing this post . 已关闭 7 年前。 Improve this ques
我正在为版本7.6进行Elasticsearch查询 我的查询是这样的: { "query": { "bool": { "should": [ {
关闭。这个问题需要多问focused 。目前不接受答案。 想要改进此问题吗?更新问题,使其仅关注一个问题 editing this post . 已关闭 7 年前。 Improve this ques
是否可以编写一个查询来检查任一子查询(而不是一个子查询)是否正确? SELECT * FROM employees e WHERE NOT EXISTS (
我找到了很多关于我的问题的答案,但问题没有解决 我有表格,有数据,例如: Data 1 Data 2 Data 3
以下查询返回错误: 查询: SELECT Id, FirstName, LastName, OwnerId, PersonEmail FROM Account WHERE lower(PersonEm
以下查询返回错误: 查询: SELECT Id, FirstName, LastName, OwnerId, PersonEmail FROM Account WHERE lower(PersonEm
我从 EditText 中获取了 String 值。以及提交查询的按钮。 String sql=editQuery.getText().toString();// SELECT * FROM empl
我有一个或多或少有效的查询(关于结果),但处理大约需要 45 秒。这对于在 GUI 中呈现数据来说肯定太长了。 所以我的需求是找到一个更快/更高效的查询(几毫秒左右会很好)我的数据表大约有 3000
这是我第一次使用 Stack Overflow,所以我希望我以正确的方式提出这个问题。 我有 2 个 SQL 查询,我正在尝试比较和识别缺失值,尽管我无法将 NULL 字段添加到第二个查询中以识别缺失
什么是动态 SQL 查询?何时需要使用动态 SQL 查询?我使用的是 SQL Server 2005。 最佳答案 这里有几篇文章: Introduction to Dynamic SQL Dynami
include "mysql.php"; $query= "SELECT ID,name,displayname,established,summary,searchlink,im
我有一个查询要“转换”为 mysql。这是查询: select top 5 * from (select id, firstName, lastName, sum(fileSize) as To
通过我的研究,我发现至少从 EF 4.1 开始,EF 查询上的 .ToString() 方法将返回要运行的 SQL。事实上,这对我来说非常有用,使用 Entity Framework 5 和 6。 但
我在构造查询来执行以下操作时遇到问题: 按activity_type_id过滤联系人,仅显示最近事件具有所需activity_type_id或为NULL(无事件)的联系人 表格结构如下: 一个联系人可
如何让我输入数据库的信息在输入数据 5 分钟后自行更新? 假设我有一张 table : +--+--+-----+ |id|ip|count| +--+--+-----+ |
我正在尝试搜索正好是 4 位数字的 ID,我知道我需要使用 LENGTH() 字符串函数,但找不到如何使用它的示例。我正在尝试以下(和其他变体)但它们不起作用。 SELECT max(car_id)
我有一个在 mysql 上运行良好的 sql 查询(查询 + 连接): select sum(pa.price) from user u , purchase pu , pack pa where (
我是一名优秀的程序员,十分优秀!