- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我的问题与对信号进行频谱分析或将信号放入 FFT 并使用合适的数值包解释结果的物理意义有关,
具体:
现在 y 轴上有实数了——我可以称之为频谱系数吗?
我的理解是,这个频谱显示了电压信号中存在多少各种频率——它们是频谱系数,因为它们是重构信号所需的各种频率的正弦和余弦系数。原始信号。
所以第一个问题是,这些频谱系数的单位是什么?
这很重要的原因是频谱系数可能很小也可能很大,所以我想使用 dB 刻度来表示它们。
但要做到这一点,我必须做出选择:
我使用的缩放比例取决于单位是什么。
任何对此的启发将不胜感激!
最佳答案
take a signal, a time-varying voltage v(t)
单位为V,值为实数。
throw it into an FFT -- ok, you get back a sequence of complex numbers
单位仍然是V,值是复数(不是V/Hz - DC信号的FFT变成DC电平上的点,而不是狄拉克δ函数缩放到无穷大)
now take the modulus (abs)
单位仍然是V,值是实数 - 信号分量的幅度
and square the result, i.e. |fft(v)|^2
单位现在为V2,值是实数 - 信号分量幅度的平方
shall I call these spectral coefficients?
它更接近功率密度,而不是通常使用的频谱系数。如果您的接收器是一个完美的电阻器,那么它将是功率,但如果您的接收器与频率相关,那么它就是“输入电压 FFT 幅度的平方”。
AT THIS POINT, you have a frequency spectrum g(w): frequency on the x axis, and... WHAT PHYSICAL UNITS on the y axis?
单位为V2
The other reason the units matter is that the spectral coefficients can be tiny and enormous, so I want to use a dB scale to represent them. But to do that, I have to make a choice: do I use the 20log10 dB conversion (corresponding to a field measurement, like voltage)? Or do I use the 10log10 dB conversion (corresponding to an energy measurement, like power)?
您已经对电压值进行了平方,为完美的 1 欧姆电阻器提供了等效功率,因此使用 10log10。
log(x2) 是 2 log(x),因此 20log10 |fft(v)| = 10log10 ( |fft(v)|2),因此,如果您没有对值进行平方,则可以使用 20log10。
关于math - 进行信号频谱分析时的傅立叶变换 (FFT) 单位,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/1523814/
FFT 库(例如 FFTW 或 numpy.fft)通常提供两个函数 fft() 和 ifft()(及其用于实值输入的特殊版本)。这些功能似乎被定义为 ifft(fft(X)) == X 和 fft(
如果我有一个特定大小 M(2 的幂)的 FFT 实现,我如何计算一组大小 P=k*M 的 FFT,其中 k 也是 2 的幂? #define M 256 #define P 1024 comple
下午好! 我正在尝试基于我已有的简单递归 FFT 实现来开发 NTT 算法。 考虑以下代码(coefficients'的长度,让它为m,是2的精确幂): /// /// Calculates the
我正在分析时间序列数据,并希望提取 5 个主要频率分量并将其用作训练机器学习模型的特征。我的数据集是 921 x 10080 。每行是一个时间序列,总共有 921 个。 在探索可能的方法时,我遇到了各
我找不到任何官方文档来证明 scipy.fft 实际上是 numpy.fft.fftpack.fft 的链接。这是显示链接的 iPython session : In [1]: import scip
文档说 np.fft.fft 这样做: Compute the one-dimensional discrete Fourier Transform. 和 np.fft.rfft 这样做: Compu
近一个月来,我一直在与一个非常奇怪的错误作斗争。问你们是我最后的希望。我用 C 编写了一个程序,它集成了 2d Cahn–Hilliard equation在傅里叶(或倒数)空间中使用隐式欧拉 (IE
我一直在制作一个例程,使用 NumPy/Scipy 测量两个光谱之间的相位差。 我已经有了Matlab写的例程,所以我基本上是用NumPy重新实现了函数和相应的单元测试。但是,我发现单元测试失败了,因
我正在研究使用 Renderscript 对大型复杂输入数组执行 FFT。 FFT 是相当标准的,因为它涉及三个循环,但内部循环执行 FFT 中的蝶形运算。因为每个蝴蝶使用数组的不同部分,所以没有明显
我需要通过修改 FFT 结果来均衡音乐样本。 我知道如何获得每个输出虚数的频率,问题是修改这个值以获得“均衡器效果”。 我需要知道如何缩放这个值。 条目大小为 4096 个样本,采样率为 44100
我将在 kiss-fft 之前制定几个计划同时(平行),我可以这样做吗,或者换句话说,kiss-fft 线程安全吗? 谢谢 最佳答案 自述文件: No static data is used. Th
要在频域中插入信号,可以在时域中填充零并执行 FFT。 假设给定向量 X 中的元素数为 N 并且 Y 与 X 相同但在一侧用 N 零填充。然后下面给出相同的结果。 $$\hat{x}(k)=\sum_
我通过相关了解了 DFT 的工作原理,并将其用作理解 FFT 结果的基础。如果我有一个以 44.1kHz 采样的离散信号,那么这意味着如果我要获取 1 秒的数据,我将有 44,100 个样本。为了对其
有人知道 Mayer FFT 的实现吗(我不必花很多时间研究代码)? 我正在尝试执行卷积,ifft 似乎产生了我称之为“镜像”的输出。换句话说,我的内核+信号长度被限制为 N/2 并且占据 n=0..
有人知道 Mayer FFT 的实现吗(我不必花很多时间研究代码)? 我正在尝试执行卷积,ifft 似乎产生了我称之为“镜像”的输出。换句话说,我的内核+信号长度被限制为 N/2 并且占据 n=0..
我有以下代码...请注意#生成正弦曲线下的两行。一个使用比另一个更高的 2pi 精度值,但它们仍然应该给出几乎相同的结果。 import numpy as np import matplotlib.p
我正在努力确保 FFTW 做我认为它应该做的事情,但我遇到了问题。我正在使用 OpenCV 的 cv::Mat。我制作了一个测试程序,给定一个 Mat f,计算 ifft(fft(f)) 并将结果与
我是从事电信项目的计算机程序员。 在我们的项目中,我必须将一系列复数更改为它们的傅立叶变换。因此我需要一个高效的 FFT 代码来满足 C89 标准。 我正在使用以下代码,它运行良好: shor
我目前正在尝试了解 numpy 的 fft 函数。为此,我测试了以下假设: 我有两个函数,f(x) = x^2 和 g(x) = f'(x) = 2*x。根据傅立叶变换定律和 wolfram alph
我一直在使用 FFT,目前正在尝试使用 FFT 从文件中获取声音波形(最终对其进行修改),然后将修改后的波形输出回文件。我得到了声波的 FFT,然后对其使用了反 FFT 函数,但输出文件听起来一点也不
我是一名优秀的程序员,十分优秀!