- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有几个数据系列,其中每个数据点都使用时间戳保存,精度为 [ms]。我想将这些系列合并到一个时间线上,所有时间戳都应该以 [s] 的精度进行采样,最后应该有一个 pd,其中第一列是日期时间,其中包含该系列中所有不同的时间戳。其他列在该日期时间合并。
我的代码可以工作,但由于内存的原因在处理大数据时失败。
数据如下所示:
a_data; a_Timestamp; b_data; b_Timestamp; c_data ; c_Timestamp
1; 2019-07-24 12:00:00.123; 2 ; 2019-07-24 12:00:00.234; 3 ; 2019-07-24 12:00:00.345;
2; 2019-07-24 12:00:03.123; 3 ; 2019-07-24 12:00:02.234; 4 ; 2019-07-24 12:00:03.645;
我的代码如下:
import numpy as np
import pandas as pd
import datetime as dt
def prepareData(df):
dfm = None
df = df.dropna(axis='columns',how='all')
df = df.sort_index()
for col in df:
dt = None
if not "Timestamp" in col:
series = pd.DataFrame({'DateTime' : pd.to_datetime(df[col + '_Timestamp']).astype('datetime64[s]'),col : df[col]})
if mergedFrame is not None:
dfm = dfm.merge(series, on='DateTime', how ='outer').sort_values('DateTime')
else:
dfm = series
dfm = dfm.loc[~dfm.DateTime.duplicated(keep='first')]
dfm = dfm.sort_index()
dfm = dfm.fillna(method='ffill')
dfm = dfm.fillna(method='bfill')
dfm = dfm.fillna(0)
return dfm.reset_index()
df = pd.read_csv('file.csv', sep = ";", na_values="n/a" ,low_memory=False)
prepareData(df).to_csv( 'file_sampled.csv', sep = ';')
结果应该是
DateTime; a_data; b_data ; c_data
2019-07-24 12:00:00; 1;2;3
2019-07-24 12:00:02; 1;3;3
2019-07-24 12:00:03; 2;3;3
2019-07-24 12:00:04; 2;3;4
我得到了这个结果,但它占用的内存对于我的电脑来说太多了。我想有更好的方法来做到这一点。
最佳答案
首先,我们选择每个数据和每个时间戳列并将它们并排放置:
x = pd.concat([pd.melt(df.iloc[:,::2], value_name='data'), pd.melt(df.iloc[:,1::2], value_name='DateTime').iloc[:,-1]], axis=1)
将日期时间字符串转换为 DateTime,四舍五入为整秒并设置为索引:
x['DateTime'] = pd.to_datetime(x.DateTime).dt.round('s')
x = x.set_index('DateTime')
最后我们对数据进行透视:
x.pivot(columns='variable', values='data')
结果:
variable a_data b_data c_data
DateTime
2019-07-24 12:00:00 1.0 2.0 3.0
2019-07-24 12:00:02 NaN 3.0 NaN
2019-07-24 12:00:03 2.0 NaN NaN
2019-07-24 12:00:04 NaN NaN 4.0
关于python-3.x - 有没有一种Pythonic方法将日期时间上的数据帧与具有不规则日期时间戳的数据对合并,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57182282/
我的数据库中有两张表,一张用于 field ,另一张用于预订。我需要的是一个查询来选择所有未预订的 field 。见下文: 餐 table 预订具有以下字段: bk_id venue_id 作为(预订
嗨,我是编码新手,我有一些培训项目,其中包括从 HTML 表单输入 MySQL 数据库。它就像你玩过的游戏的日志。第一个日期输入是您开始游戏的时间,第二个日期输入是您完成游戏的时间。但我需要检查器或类
我是这个 sql 编码的新手,我正在尝试学习新的东西。因此,我创建了一个交货表,其中包含一些属性,如商品代码、交货日期、交货数量。所以如何从同一张表中获取第一个交货日期(最小日期)和交货数量以及最晚交
我从支付网关返回了这个日期 2014-05-15T08:40:52+01:00 我得到 2014-05-15T08:40:52 但我无法识别时区 +01:00 的含义 我的位置时区是 UTC−06:0
我快要疯了,请帮忙。 我有一列包含日期时间值。 我需要找到每天的最小值和最大值。 数据看起来像这样 2012-11-23 05:49:26.000 2012-11-23 07:55:43.000
我从 json 数据中获取日期为 2015 年 4 月 15 日晚上 10:15我只想在 html 页面中显示 json 响应数据的时间,例如 10:15 PM这里我放了我的js函数和html代码 J
是否有 javascript 库或其他机制允许我将 .NET 日期/时间格式字符串(即 yyyy-MM-dd HH:mm:ss)传递给 javascript函数并让它相应地解析提供的日期时间值?我一直
我正在使用以下代码以正确的格式获取当前的 UTC 时间,但客户返回并要求时间戳现在使用 EST 而不是 UTC。我搜索了 Google 和 stackoverflow,但找不到适用于我现有代码的答案。
我有以下日期的平均温度数据。我想找到连续至少 5 天低于或高于 0 摄氏度的开始日期。 date_short mean.temp 1 2018-05-18 17.54 2 2018-05-19
它可以在其他网络浏览器中使用,但 IE11 返回无效日期。 为了调试我使用了下面的代码。 console.log('before - ' + date.value); date.value = new
我在 Excel 中有一个数据的 Web 提取,其中日期列带有/Date(1388624400000)/。我需要在 Excel 中将其转换为日期。 最佳答案 能够从 here 中推断出它. 假设字符串
嗨,我的 Schmema 有一个带有 ISO 日期的字段: ISODate("2015-04-30T14:47:46.501Z") Paypal 在成功付款后以该形式返回日期对象: Time/Date
我的 table : CREATE TABLE `tbdata` ( `ID` INT(10) NOT NULL AUTO_INCREMENT, `PatientID` INT(10) NOT
我正在 Ubuntu 服务器 12.04 中编写一个 shell 脚本,它应该比较日志文件中的一些数据。在日志文件中,日期以以下格式给出: [Mon Apr 08 15:02:54 2013] 如您所
我想使用 GROUP BY WITH ROLLUP 创建一个表并获取总行数而不是 null。 $sql ="SELECT IF(YEAR(transaktioner.datum
我正在创建博客文章,在成功迁移我的博客文件后,当我转到我网站的博客页面时返回一个错误(无法解析其余部分:':“Ymd”'来自'post.date|date: "Ymd"') 我似乎无法确定这是语法错误
我正在尝试获取要插入到 CAML 查询中的月份范围,即:2010-09-01 和 2010-09-30。 我使用以下代码生成这两个值: var month = "10/2010"; var month
如何将代码document.write("直到指定日期")更改为writeMessage(date)中的日期?此外,writeMessage(date) 中的日期未正确显示(仅显示年份)。感谢您帮助解
我在 Windows (XP) 和 Linux 上都尝试过 utime()。在 Windows 上我得到一个 EACCES 错误,在 Linux 上我没有得到任何错误(但时间没有改变)。我的 utim
我正在尝试计算发生在同一日期的值的总和(在 XYZmin 中)。 我的数据看起来像这样, bar <- structure(list(date = structure(c(15622, 15622,
我是一名优秀的程序员,十分优秀!