- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试将多项式拟合到我的数据集,看起来像这样(完整的数据集位于帖子末尾):
理论预测曲线的公式为:
看起来像这样(x 介于 0 和 1 之间):
当我尝试通过以下方式在 R 中创建线性模型时:
mod <- lm(y ~ poly(x, 2, raw=TRUE)/poly(x, 2))
这与我的预期有很大不同。您是否知道如何根据这些数据拟合一条新曲线,使其与理论预测的曲线相似?此外,它应该只有一个最小值。
完整数据集:
<小时/>x 值向量:
x <- c(0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12,
0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, 0.25,
0.26, 0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38,
0.39, 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.50, 0.51,
0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61, 0.62, 0.63, 0.64,
0.65, 0.66, 0.67, 0.68, 0.69, 0.70, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77,
0.78, 0.79, 0.80, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.90,
0.91, 0.92, 0.93, 0.94, 0.95)
y 值向量:
y <- c(4.104, 4.444, 4.432, 4.334, 4.285, 4.058, 3.901, 4.382,
4.258, 4.158, 3.688, 3.826, 3.724, 3.867, 3.811, 3.550, 3.736, 3.591,
3.566, 3.566, 3.518, 3.581, 3.505, 3.454, 3.529, 3.444, 3.501, 3.493,
3.362, 3.504, 3.365, 3.348, 3.371, 3.389, 3.506, 3.310, 3.578, 3.497,
3.302, 3.530, 3.593, 3.630, 3.420, 3.467, 3.656, 3.644, 3.715, 3.698,
3.807, 3.836, 3.826, 4.017, 3.942, 4.208, 3.959, 3.856, 4.157, 4.312,
4.349, 4.286, 4.483, 4.599, 4.395, 4.811, 4.887, 4.885, 5.286, 5.422,
5.527, 5.467, 5.749, 5.980, 6.242, 6.314, 6.587, 6.790, 7.183, 7.450,
7.487, 8.566, 7.946, 9.078, 9.308, 10.267, 10.738, 11.922, 12.178, 13.243,
15.627, 16.308, 19.246, 22.022, 25.223, 29.752)
最佳答案
使用nls
来拟合非线性模型。请注意,模型公式并非如问题中显示的那样唯一定义,因为如果我们将所有系数乘以任意数字,结果仍将给出相同的预测。为了避免这种情况,我们需要固定一个系数。第一次尝试使用问题中显示的系数作为起始值(固定系数除外),但失败了,因此尝试删除 C,并将所得系数输入到 C = 1
的第二次拟合中。
st <- list(a = 43, b = -14, c = 25, B = 18)
fm <- nls(y ~ (a + b * x + c * x^2) / (9 + B * x), start = st)
fm2 <- nls(y ~ (a + b * x + c * x^2) / (9 + B * x + C * x^2), start = c(coef(fm), C = 1))
plot(y ~ x)
lines(fitted(fm2) ~ x, col = "red")
(图表后继续)
注意:以下是使用 nls2
通过随机搜索获取起始值的示例。我们假设每个系数都在 -50 到 50 之间。
library(nls2)
set.seed(123) # for reproducibility
v <- c(a = 50, b = 50, c = 50, B = 50, C = 50)
st0 <- as.data.frame(rbind(-v, v))
fm0 <- nls2(y ~ (a + b * x + c * x^2) / (9 + B * x + C * x^2), start = st0,
alg = "random", control = list(maxiter = 1000))
fm3 <- nls(y ~ (a + b * x + c * x^2) / (9 + B * x + C * x^2), st = coef(fm0))
关于多项式近似比,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33857745/
所以我想创建一个程序,当用户输入值 c 且 a = 1 时,打印出可因式分解的二次方程。程序应确定 b 的所有可能的整数值,以便三项式以 x^2 + bx + c 的形式打印出来 一个例子是,如果用户
我有自己定义的多项式类,它是系数列表的形式。 有点像 axˆ2 + bx + c is equals to [c, b, a] (for ax + b == [b, a] similarly, for
我必须制作一个对多项式执行运算的 GUI,但我不断收到无法摆脱的 NullPointerExceptions。在输出上它没有显示任何内容。我尝试调试我的程序,据我所知,我从键盘插入的多项式在某种程度上
numpy.lib.polynomial.polyval 允许您使用另一个多项式评估多项式: numpy.polyval(poly1d([1, 2, 3]), 2) Out[832]: 11 nump
如果我想计算多项式,如何在 C 中定义具有可变数量参数的函数?我的函数必须有这个参数:第一个参数:float x,第二个:int n,其余的 float (系数)。非常感谢! 最佳答案 用 varia
我正在尝试求多项式的不定积分,但是我的数学和编码都不是很好。我的代码可以编译,但我相信我的公式有误: Polynomial Polynomial :: indefiniteIntegral() co
我有 3 个数据集。 2 表示多项式本身(我们称它们为 x 和 y),1 表示函数值(它将是 z)。 多项式看起来像这样(假设两个维度的幂都是 3): z = a00 + a01*x + a02*x^
如何在 python 中计算最佳拟合线,然后将其绘制在 matplotlib 中的散点图上? 我使用普通最小二乘回归计算线性最佳拟合线如下: from sklearn import linear_mo
我正在尝试分解 bool 多项式以获得逻辑网络的最小形式。我的变量是 a1、a2、a3 ... 以及负对应项 na1、na2、na3 ... 如果需要一个函数 f = a1*a2*b2*nb1 + a
长话短说 如何使用系数数组构建表达式并将其转换为 Func ?有没有比表达式树更好的方法? 我有一个使用 Func formula 构造的不可变序列类型用于为序列 A 生成术语 An。我开始构建一个辅
我在我的 Mac OS Sierra 上运行 Spark 2.1.1(这应该有帮助)。我尝试在网上找到的测试数据集上拟合多项式逻辑回归,我在此处报告前几行(我不知道如何在此处附加文件): 1,0,24
我必须构建一个从类 lista(列表)继承的类多项式(polinom)。我必须从多项式类中加、减、乘、除 2 个对象。我有这段代码。我不明白为什么我的析构函数不工作。我还必须重载运算符:+、-、> 但
我有一个 Polynomial类,我正在尝试定义 operator++ ,递增前和递增后,以及尝试定义递减前和递减后,即 operator-- .这是我的代码片段: class Polynomial
我是编程新手(Python 是我的第一语言),但我喜欢设计算法。我目前正在研究方程组(整数),但找不到任何解决我的特定问题的引用。 让我解释一下。 我有一个等式(一个测试,如果你愿意的话): raw_
我正在尝试使用 scipy.stats (python) 中的 multinominal.pmf 函数。 当我在输入中所有概率都大于零的情况下使用此函数时,它工作正常。问题是当我想在其中一个概率为零时
我想用 0xA001 多项式计算字节数组的 CRC-16 校验和。但我真的不知道如何在 Java 中做到这一点,以及如何使用给定的多项式。它是某种特殊值(0xA001)吗?你能告诉我一个可以为我计算校
由于我的分类器在测试数据上产生了大约 99% 的准确率,我有点怀疑并想深入了解我的 NB 分类器最有用的特征,看看它正在学习什么样的特征。以下主题非常有用:How to get most inform
如 McFadden (1978)表明,如果多项 logit 模型中的备选方案数量大到无法计算,则通过对备选方案进行随机子集来获得一致估计仍然是可行的,因此每个个体的估计概率基于所选备选方案和 C其他
我现在有一些离散点,我使用 scipy.interpolate.splprep () 函数(B 样条插值)对其进行插值,以获得令人满意的平滑曲线。这是代码(借鉴另一个问题的答案)和我得到的结果。 im
我在 IPython notebook 中有一些多项式 x: import numpy as np x = np.polynomial.polynomial.Polynomial([1,2,3]) x
我是一名优秀的程序员,十分优秀!