- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试保存模型,然后重新使用它来对图像进行分类,但不幸的是,我在恢复已保存的模型时遇到错误。
创建模型的代码:
# Deep Learning
# =============
#
# Assignment 4
# ------------
# In[25]:
# These are all the modules we'll be using later. Make sure you can import them
# before proceeding further.
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
# In[37]:
pickle_file = 'notMNIST.pickle'
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
train_dataset = save['train_dataset']
train_labels = save['train_labels']
valid_dataset = save['valid_dataset']
valid_labels = save['valid_labels']
test_dataset = save['test_dataset']
test_labels = save['test_labels']
del save # hint to help gc free up memory
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
print(test_labels)
# Reformat into a TensorFlow-friendly shape:
# - convolutions need the image data formatted as a cube (width by height by #channels)
# - labels as float 1-hot encodings.
# In[38]:
image_size = 28
num_labels = 10
num_channels = 1 # grayscale
import numpy as np
def reformat(dataset, labels):
dataset = dataset.reshape(
(-1, image_size, image_size, num_channels)).astype(np.float32)
#print(np.arange(num_labels))
labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
#print(labels[0,:])
print(labels[0])
return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
#print(labels[0])
# In[39]:
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
# Let's build a small network with two convolutional layers, followed by one fully connected layer. Convolutional networks are more expensive computationally, so we'll limit its depth and number of fully connected nodes.
# In[47]:
batch_size = 16
patch_size = 5
depth = 16
num_hidden = 64
graph = tf.Graph()
with graph.as_default():
# Input data.
tf_train_dataset = tf.placeholder(
tf.float32, shape=(batch_size, image_size, image_size, num_channels))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# Variables.
layer1_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, num_channels, depth], stddev=0.1),name="layer1_weights")
layer1_biases = tf.Variable(tf.zeros([depth]),name = "layer1_biases")
layer2_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, depth, depth], stddev=0.1),name = "layer2_weights")
layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]),name ="layer2_biases")
layer3_weights = tf.Variable(tf.truncated_normal(
[image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1),name="layer3_biases")
layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]),name = "layer3_biases")
layer4_weights = tf.Variable(tf.truncated_normal(
[num_hidden, num_labels], stddev=0.1),name = "layer4_weights")
layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]),name = "layer4_biases")
# Model.
def model(data):
conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer1_biases)
conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer2_biases)
shape = hidden.get_shape().as_list()
reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
return tf.matmul(hidden, layer4_weights) + layer4_biases
# Training computation.
logits = model(tf_train_dataset)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)
# Predictions for the training, validation, and test data.
train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
test_prediction = tf.nn.softmax(model(tf_test_dataset))
# In[48]:
num_steps = 1001
#saver = tf.train.Saver()
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
print('Initialized')
for step in range(num_steps):
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
batch_labels = train_labels[offset:(offset + batch_size), :]
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
_, l, predictions = session.run(
[optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 50 == 0):
print('Minibatch loss at step %d: %f' % (step, l))
print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
print('Validation accuracy: %.1f%%' % accuracy(
valid_prediction.eval(), valid_labels))
print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
save_path = tf.train.Saver().save(session, "/tmp/model.ckpt")
print("Model saved in file: %s" % save_path)
一切正常,模型存储在相应的文件夹中。
我又创建了一个 python 文件,我在其中尝试恢复模型,但出现错误
# In[1]:
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
# In[3]:
image_size = 28
num_labels = 10
num_channels = 1 # grayscale
import numpy as np
# In[4]:
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
# In[8]:
batch_size = 16
patch_size = 5
depth = 16
num_hidden = 64
graph = tf.Graph()
with graph.as_default():
'''# Input data.
tf_train_dataset = tf.placeholder(
tf.float32, shape=(batch_size, image_size, image_size, num_channels))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)'''
# Variables.
layer1_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, num_channels, depth], stddev=0.1),name="layer1_weights")
layer1_biases = tf.Variable(tf.zeros([depth]),name = "layer1_biases")
layer2_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, depth, depth], stddev=0.1),name = "layer2_weights")
layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]),name ="layer2_biases")
layer3_weights = tf.Variable(tf.truncated_normal(
[image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1),name="layer3_biases")
layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]),name = "layer3_biases")
layer4_weights = tf.Variable(tf.truncated_normal(
[num_hidden, num_labels], stddev=0.1),name = "layer4_weights")
layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]),name = "layer4_biases")
# Model.
def model(data):
conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer1_biases)
conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer2_biases)
shape = hidden.get_shape().as_list()
reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
return tf.matmul(hidden, layer4_weights) + layer4_biases
'''# Training computation.
logits = model(tf_train_dataset)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)'''
# Predictions for the training, validation, and test data.
#train_prediction = tf.nn.softmax(logits)
#valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
#test_prediction = tf.nn.softmax(model(tf_test_dataset))
# In[17]:
#saver = tf.train.Saver()
with tf.Session() as sess:
# Restore variables from disk.
tf.train.Saver().restore(sess, "/tmp/model.ckpt")
print("Model restored.")
# Do some work with the model
我收到的错误是:
没有要保存的变量
如有任何帮助,我们将不胜感激
最佳答案
这里的错误非常微妙。在 In[8]
中,您创建了一个 tf.Graph
称为 graph
并将其设置为 with graph.as_default():
的默认值堵塞。这意味着所有变量都是在graph
中创建的,如果您打印graph.all_variables()
,您应该会看到变量列表。
但是,您在创建 (i) tf.Session
之前退出 with
block ,以及 (ii) tf.train.Saver
。这意味着 session 和保存程序是在不同的图表中创建的(当您没有显式创建图表并将其设置为默认图表时使用的全局默认tf.Graph
) ),它不包含任何变量,或者根本不包含任何节点。
至少有两种解决方案:
如Yaroslav suggests ,您可以在不使用 with graph.as_default():
block 的情况下编写程序,这避免了与多个图的混淆。但是,这可能会导致 IPython 笔记本中不同单元格之间的名称冲突,这在使用 tf.train.Saver 时会很尴尬,因为它使用了tf.Variable
作为检查点文件中的键。
您可以在 with graph.as_default():
block 内部创建保护程序,并使用以下命令创建 tf.Session
一个显式的图,如下:
with graph.as_default():
# [Variable and model creation goes here.]
saver = tf.train.Saver() # Gets all variables in `graph`.
with tf.Session(graph=graph) as sess:
saver.restore(sess)
# Do some work with the model....
或者,您可以在 with graph.as_default():
block 内部创建tf.Session
,在这种情况下它将使用所有操作的图表
。
关于tensorflow - Tensorflow 中没有变量来保存错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36281129/
我尝试根据表单元素的更改禁用/启用保存按钮。但是,当通过弹出按钮选择更改隐藏输入字段值时,保存按钮不受影响。 下面是我的代码。我正在尝试序列化旧的表单值并与更改后的表单值进行比较。但我猜隐藏的字段值无
我正在尝试保存模型的实例,但我得到了 Invalid EmbeddedDocumentField item (1) 其中 1 是项目的 ID(我认为)。 模型定义为 class Graph(Docum
我有一个非常奇怪的问题......在我的 iPhone 应用程序中,用户可以打开相机胶卷中的图像,在我的示例中 1920 x 1080 像素 (72 dpi) 的壁纸。 现在,想要将图像的宽度调整为例
目前,我正在使用具有排序/过滤功能的数据表成功地从我的数据库中显示图像元数据。在我的数据表下方,我使用第三方图像覆盖流( http://www.jacksasylum.eu/ContentFlow/
我的脚本有问题。我想按此顺序执行以下步骤: 1. 保存输入字段中的文本。 2. 删除输入字段中的所有文本。 3. 在输入字段中重新加载之前删除的相同文本。 我的脚本的问题是 ug()- 函数在我的文本
任何人都可以帮助我如何保存多对多关系吗?我有任务,用户可以有很多任务,任务可以有很多用户(多对多),我想要实现的是,在更新表单中,管理员可以将多个用户分配给特定任务。这是通过 html 多选输入来完成
我在 Tensorflow 中训练了一个具有批归一化的模型。我想保存模型并恢复它以供进一步使用。批量归一化是通过 完成的 def batch_norm(input, phase): retur
我遇到了 grails 的问题。我有一个看起来像这样的域: class Book { static belongsTo = Author String toString() { tit
所以我正在开发一个应用程序,一旦用户连接(通过 soundcloud),就会出现以下对象: {userid: userid, username: username, genre: genre, fol
我正在开发一个具有多选项卡布局的 Angular 7 应用程序。每个选项卡都包含一个组件,该组件可以引用其他嵌套组件。 当用户选择一个新的/另一个选项卡时,当前选项卡上显示的组件将被销毁(我不仅仅是隐
我尝试使用 JEditorPane 进行一些简单的文本格式化,但随着知识的增长,我发现 JTextPane 更容易实现并且更强大。 我的问题是如何将 JTextPane 中的格式化文本保存到文件?它应
使用 Docker 相当新。 我为 Oracle 11g Full 提取了一个图像。创建了一个数据库并将应用程序安装到容器中。 正确配置后,我提交了生成 15GB 镜像的容器。 测试了该图像的新容器,
我是使用 Xcode 和 swift 的新手,仍在学习中。我在将核心数据从实体传递到文本字段/标签时遇到问题,然后用户可以选择编辑和保存记录。我的目标是,当用户从 friendslistViewCon
我正在用 Java 编写 Android 游戏,我需要一种可靠的方法来快速保存和加载应用程序状态。这个问题似乎适用于大多数 OO 语言。 了解我需要保存的内容:我正在使用策略模式来控制我的游戏实体。我
我想知道使用 fstream 加载/保存某种结构类型的数组是否是个好主意。注意,我说的是加载/保存到二进制文件。我应该加载/保存独立变量,例如 int、float、boolean 而不是结构吗?我这么
我希望能够将 QNetworkReply 保存到 QString/QByteArray。在我看到的示例中,它们总是将流保存到另一个文件。 目前我的代码看起来像这样,我从主机那里得到一个字符串,我想做的
我正在创建一个绘图应用程序。我有一个带有 Canvas 的自定义 View ,它根据用户输入绘制线条: class Line { float startX, startY, stopX, stop
我有 3 个 Activity 第一个 Activity 调用第二个 Activity ,第二个 Activity 调用第三个 Activity 。 第二个 Activity 使用第一个 Activi
我想知道如何在 Xcode 中保存 cookie。我想使用从一个网页获取的 cookie 并使用它访问另一个网页。我使用下面的代码登录该网站,我想保存从该连接获得的 cookie,以便在我建立另一个连
我有一个 SQLite 数据库存储我的所有日历事件,建模如下: TimerEvent *Attributes -date -dateForMark -reminder *Relat
我是一名优秀的程序员,十分优秀!