- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试保存模型,然后重新使用它来对图像进行分类,但不幸的是,我在恢复已保存的模型时遇到错误。
创建模型的代码:
# Deep Learning
# =============
#
# Assignment 4
# ------------
# In[25]:
# These are all the modules we'll be using later. Make sure you can import them
# before proceeding further.
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
# In[37]:
pickle_file = 'notMNIST.pickle'
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
train_dataset = save['train_dataset']
train_labels = save['train_labels']
valid_dataset = save['valid_dataset']
valid_labels = save['valid_labels']
test_dataset = save['test_dataset']
test_labels = save['test_labels']
del save # hint to help gc free up memory
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
print(test_labels)
# Reformat into a TensorFlow-friendly shape:
# - convolutions need the image data formatted as a cube (width by height by #channels)
# - labels as float 1-hot encodings.
# In[38]:
image_size = 28
num_labels = 10
num_channels = 1 # grayscale
import numpy as np
def reformat(dataset, labels):
dataset = dataset.reshape(
(-1, image_size, image_size, num_channels)).astype(np.float32)
#print(np.arange(num_labels))
labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
#print(labels[0,:])
print(labels[0])
return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
#print(labels[0])
# In[39]:
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
# Let's build a small network with two convolutional layers, followed by one fully connected layer. Convolutional networks are more expensive computationally, so we'll limit its depth and number of fully connected nodes.
# In[47]:
batch_size = 16
patch_size = 5
depth = 16
num_hidden = 64
graph = tf.Graph()
with graph.as_default():
# Input data.
tf_train_dataset = tf.placeholder(
tf.float32, shape=(batch_size, image_size, image_size, num_channels))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# Variables.
layer1_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, num_channels, depth], stddev=0.1),name="layer1_weights")
layer1_biases = tf.Variable(tf.zeros([depth]),name = "layer1_biases")
layer2_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, depth, depth], stddev=0.1),name = "layer2_weights")
layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]),name ="layer2_biases")
layer3_weights = tf.Variable(tf.truncated_normal(
[image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1),name="layer3_biases")
layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]),name = "layer3_biases")
layer4_weights = tf.Variable(tf.truncated_normal(
[num_hidden, num_labels], stddev=0.1),name = "layer4_weights")
layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]),name = "layer4_biases")
# Model.
def model(data):
conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer1_biases)
conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer2_biases)
shape = hidden.get_shape().as_list()
reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
return tf.matmul(hidden, layer4_weights) + layer4_biases
# Training computation.
logits = model(tf_train_dataset)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)
# Predictions for the training, validation, and test data.
train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
test_prediction = tf.nn.softmax(model(tf_test_dataset))
# In[48]:
num_steps = 1001
#saver = tf.train.Saver()
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
print('Initialized')
for step in range(num_steps):
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
batch_labels = train_labels[offset:(offset + batch_size), :]
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
_, l, predictions = session.run(
[optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 50 == 0):
print('Minibatch loss at step %d: %f' % (step, l))
print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
print('Validation accuracy: %.1f%%' % accuracy(
valid_prediction.eval(), valid_labels))
print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
save_path = tf.train.Saver().save(session, "/tmp/model.ckpt")
print("Model saved in file: %s" % save_path)
一切正常,模型存储在相应的文件夹中。
我又创建了一个 python 文件,我在其中尝试恢复模型,但出现错误
# In[1]:
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
# In[3]:
image_size = 28
num_labels = 10
num_channels = 1 # grayscale
import numpy as np
# In[4]:
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
# In[8]:
batch_size = 16
patch_size = 5
depth = 16
num_hidden = 64
graph = tf.Graph()
with graph.as_default():
'''# Input data.
tf_train_dataset = tf.placeholder(
tf.float32, shape=(batch_size, image_size, image_size, num_channels))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)'''
# Variables.
layer1_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, num_channels, depth], stddev=0.1),name="layer1_weights")
layer1_biases = tf.Variable(tf.zeros([depth]),name = "layer1_biases")
layer2_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, depth, depth], stddev=0.1),name = "layer2_weights")
layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]),name ="layer2_biases")
layer3_weights = tf.Variable(tf.truncated_normal(
[image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1),name="layer3_biases")
layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]),name = "layer3_biases")
layer4_weights = tf.Variable(tf.truncated_normal(
[num_hidden, num_labels], stddev=0.1),name = "layer4_weights")
layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]),name = "layer4_biases")
# Model.
def model(data):
conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer1_biases)
conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer2_biases)
shape = hidden.get_shape().as_list()
reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
return tf.matmul(hidden, layer4_weights) + layer4_biases
'''# Training computation.
logits = model(tf_train_dataset)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)'''
# Predictions for the training, validation, and test data.
#train_prediction = tf.nn.softmax(logits)
#valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
#test_prediction = tf.nn.softmax(model(tf_test_dataset))
# In[17]:
#saver = tf.train.Saver()
with tf.Session() as sess:
# Restore variables from disk.
tf.train.Saver().restore(sess, "/tmp/model.ckpt")
print("Model restored.")
# Do some work with the model
我收到的错误是:
没有要保存的变量
如有任何帮助,我们将不胜感激
最佳答案
这里的错误非常微妙。在 In[8]
中,您创建了一个 tf.Graph
称为 graph
并将其设置为 with graph.as_default():
的默认值堵塞。这意味着所有变量都是在graph
中创建的,如果您打印graph.all_variables()
,您应该会看到变量列表。
但是,您在创建 (i) tf.Session
之前退出 with
block ,以及 (ii) tf.train.Saver
。这意味着 session 和保存程序是在不同的图表中创建的(当您没有显式创建图表并将其设置为默认图表时使用的全局默认tf.Graph
) ),它不包含任何变量,或者根本不包含任何节点。
至少有两种解决方案:
如Yaroslav suggests ,您可以在不使用 with graph.as_default():
block 的情况下编写程序,这避免了与多个图的混淆。但是,这可能会导致 IPython 笔记本中不同单元格之间的名称冲突,这在使用 tf.train.Saver 时会很尴尬,因为它使用了tf.Variable
作为检查点文件中的键。
您可以在 with graph.as_default():
block 内部创建保护程序,并使用以下命令创建 tf.Session
一个显式的图,如下:
with graph.as_default():
# [Variable and model creation goes here.]
saver = tf.train.Saver() # Gets all variables in `graph`.
with tf.Session(graph=graph) as sess:
saver.restore(sess)
# Do some work with the model....
或者,您可以在 with graph.as_default():
block 内部创建tf.Session
,在这种情况下它将使用所有操作的图表
。
关于tensorflow - Tensorflow 中没有变量来保存错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36281129/
这个问题在这里已经有了答案: 关闭 10 年前。 Possible Duplicate: How to nest OR statements in JavaScript? 有没有办法做到这一点:
在 JavaScript 中有没有办法让一个变量总是等于一个变量?喜欢var1 = var2但是当var2更新,也是var1 . 例子 var var1 = document.getElementBy
我正在努力理解这代表什么 var1 = var2 == var3 我的猜测是这等同于: if (var2 == var3): var1 = var2 最佳答案 赋值 var1 = var2
这个问题已经有答案了: What does the PHP error message "Notice: Use of undefined constant" mean? (2 个回答) 已关闭 8
我在临时表中有几条记录,我想从每条记录中获取一个值并将其添加到一个变量中,例如 color | caption -------------------------------- re
如何将字符串转为变量(字符串变量--> $variable)? 或者用逗号分隔的变量列表然后转换为实际变量。 我有 2 个文件: 列名文件 行文件 我需要根据字符串匹配行文件中的整行,并根据列名文件命
我有一个我无法解决的基本 php 问题,我也想了解为什么! $upperValueCB = 10; $passNodeMatrixSource = 'CB'; $topValue= '$uppe
这可能吗? php $variable = $variable1 || $variable2? 如果 $variable1 为空则使用 $variable2 是否存在类似的东西? 最佳答案 PHP 5
在 Perl 5.20 中,for 循环似乎能够修改模块作用域的变量,但不能修改父作用域中的词法变量。 #!/usr/bin/env perl use strict; use warnings; ou
为什么这不起作用: var variable; variable = variable.concat(variable2); $('#lunk').append(variable) 我无法弄清楚这一点
根据我的理解,在32位机器上,指针的sizeof是32位(4字节),而在64位机器上,它是8字节。无论它们指向什么数据类型,它们都有固定的大小。我的计算机在 64 位上运行,但是当我打印包含 * 的大
例如: int a = 10; a += 1.5; 这运行得很完美,但是 a = a+1.5; 此作业表示类型不匹配:无法从 double 转换为 int。所以我的问题是:+= 运算符 和= 运算符
您好,我写了这个 MySQL 存储过程,但我一直收到这个语法错误 #1064 - You have an error in your SQL syntax; check the manual that
我试图在我的场景中显示特定的奖牌,这取决于你的高分是基于关卡的目标。 // Get Medal Colour if levelHighscore goalScore { sc
我必须维护相当古老的 Visual C++ 源代码的大型代码库。我发现代码如下: bIsOk = !!m_ptr->isOpen(some Parameters) bIsOk的数据类型是bool,is
我有一个从 MySQL 数据库中提取的动态产品列表。在 list 上有一个立即联系 按钮,我正在使用一个 jquery Modal 脚本,它会弹出一个表单。 我的问题是尝试将产品信息变量传递给该弹出窗
这个问题在这里已经有了答案: 关闭 10 年前。 Possible Duplicate: What is the difference between (type)value and type(va
jQuery Core Style Guidelines建议两种不同的方法来检查变量是否已定义。 全局变量:typeof variable === "undefined" 局部变量:variable
这个问题已经有答案了: 已关闭11 年前。 Possible Duplicate: “Variable” Variables in Javascript? 我想肯定有一种方法可以在 JavaScrip
在语句中使用多重赋值有什么优点或缺点吗?在简单的例子中 var1 = var2 = true; 赋值是从右到左的(我相信 C# 中的所有赋值都是如此,而且可能是 Java,尽管我没有检查后者)。但是,
我是一名优秀的程序员,十分优秀!