gpt4 book ai didi

r - 使用 nlme 和 lsoda 拟合一阶方程

转载 作者:行者123 更新时间:2023-12-03 01:07:41 33 4
gpt4 key购买 nike

我尝试使用 nlme 和 lsoda 拟合一阶微分模型。基本思想如下:我首先定义允许生成微分方程解的函数:

library(deSolve)

ODE1 <- function(time, x, parms) {with(as.list(c(parms, x)), {
import <- excfunc(time)
dS <- import*k/tau - (S-yo)/tau
res <- c(dS)
list(res)})}


solution_ODE1 = function(tau1,k1,yo1,excitation,time){
excfunc <- approxfun(time, excitation, rule = 2)
parms <- c(tau = tau1, k = k1, yo = yo1, excfunc = excfunc)
xstart = c(S = yo1)
out <- lsoda(xstart, time, ODE1, parms)
return(out[,2])
}

然后,我按照两个 ID 的公式生成数据:

time <- 0:49
excitation <- c(rep(0,10),rep(1,10),rep(0,10),rep(1,10),rep(0,10))
simu_data <- data.frame(signal = c(solution_ODE1(3,2,0.1,excitation,time)+rnorm(length(time),0,0.1),
solution_ODE1(3.2,1.5,0.3,excitation,time)+rnorm(length(time),0,0.1)),
time = rep(time,2),
excitation = rep(excitation,2),
ID = rep(c("A","B"),each = length(time)))

它是这样的:

library(ggplot2)
ggplot(simu_data)+
geom_point(aes(time,signal,color = "signal"),size = 2)+
geom_line(aes(time,excitation,color = "excitation"))+
facet_wrap(~ID)

enter image description here

然后我尝试使用 nlme 进行拟合:

fit1 <- nlme(signal ~ solution_ODE1(damping,gain,eq,excitation,time),
data = simu_data,
fixed = damping + gain + eq ~1,
random = damping ~ 1 ,
groups = ~ ID,
start = c(damping = 5, gain = 1,eq = 0))

我遇到了这个错误,但我没有得到:

Error in eval(substitute(expr), data, enclos = parent.frame()) : object 'k' not found

traceback 显示错误来自 ODE1 模型,该模型在生成值时起作用。

16.    eval(substitute(expr), data, enclos = parent.frame()) 
15. eval(substitute(expr), data, enclos = parent.frame())
14. with.default(as.list(c(parms, x)), {
import <- excfunc(time)
dS <- import * k/tau - (S - yo)/tau
res <- c(dS) ...
13. with(as.list(c(parms, x)), {
import <- excfunc(time)
dS <- import * k/tau - (S - yo)/tau
res <- c(dS) ...
12. func(time, state, parms, ...)
11. Func2(times[1], y)
10. eval(Func2(times[1], y), rho)
9. checkFunc(Func2, times, y, rho)
8. lsoda(xstart, time, ODE1, parms)
7. solution_ODE1(damping, gain, eq, excitation, time)
6. eval(model, data.frame(data, pars))
5. eval(model, data.frame(data, pars))
4. eval(modelExpression[[2]], envir = nlEnv)
3. eval(modelExpression[[2]], envir = nlEnv)
2. nlme.formula(signal ~ solution_ODE1(damping, gain, eq, excitation,
time), data = simu_data, fixed = damping + gain + eq ~ 1,
random = damping ~ 1, groups = ~ID, start = c(damping = 5,
gain = 1, eq = 0))
1. nlme(signal ~ solution_ODE1(damping, gain, eq, excitation, time),
data = simu_data, fixed = damping + gain + eq ~ 1, random = damping ~
1, groups = ~ID, start = c(damping = 5, gain = 1, eq = 0))

有人知道我应该如何进行吗?

<小时/>

编辑

我尝试按照mikeck的建议进行修改:

ODE1 <- function(time, x, parms) {
import <- parms$excfunc(time)
dS <- import*parms$k/parms$tau - (x["S"]-parms$yo)/parms$tau
res <- c(dS)
list(res)}

生成数据没有问题。但是使用 nlme 现在给出:

Error in checkFunc(Func2, times, y, rho) : The number of derivatives returned by func() (0) must equal the length of the initial conditions vector (100)

具有以下回溯:

> traceback()
10: stop(paste("The number of derivatives returned by func() (",
length(tmp[[1]]), ") must equal the length of the initial conditions vector (",
length(y), ")", sep = ""))
9: checkFunc(Func2, times, y, rho)
8: lsoda(xstart, time, ODE1, parms) at #5
7: solution_ODE1(damping, gain, eq, excitation, time)
6: eval(model, data.frame(data, pars))
5: eval(model, data.frame(data, pars))
4: eval(modelExpression[[2]], envir = nlEnv)
3: eval(modelExpression[[2]], envir = nlEnv)
2: nlme.formula(signal ~ solution_ODE1(damping, gain, eq, excitation,
time), data = simu_data, fixed = damping + gain + eq ~ 1,
random = damping ~ 1, groups = ~ID, start = c(damping = 5,
gain = 1, eq = 0))
1: nlme(signal ~ solution_ODE1(damping, gain, eq, excitation, time),
data = simu_data, fixed = damping + gain + eq ~ 1, random = damping ~
1, groups = ~ID, start = c(damping = 5, gain = 1, eq = 0))

最佳答案

在您的示例中,您的 times 向量并不是单调运行的。我认为这与 lsoda 有点困惑。时间在这里运作的方式的背景/意义是什么?将随机效应模型与两组进行拟合并没有多大意义。您是否想将同一条曲线拟合到两个独立的时间序列?

这是一个经过一些调整的精简示例(并非所有内容都可以折叠为数字向量而不丢失必要的结构):

library(deSolve)
ODE1 <- function(time, x, parms) {
with(as.list(parms), {
import <- excfunc(time)
dS <- import*k/tau - (x-yo)/tau
res <- c(dS)
list(res)
})
}
solution_ODE1 = function(tau1,k1,yo1,excitation,time){
excfunc <- approxfun(time, excitation, rule = 2)
parms <- list(tau = tau1, k = k1, yo = yo1, excfunc = excfunc)
xstart = yo1
out <- lsoda(xstart, time, ODE1, parms)
return(out[,2])
}
time <- 0:49
excitation <- c(rep(0,10),rep(1,10),rep(0,10),rep(1,10),rep(0,10))
simu_data <- data.frame(time = rep(time,2),
excitation = rep(excitation,2))
svec <- c(damping = 3, gain = 1.75, eq = 0.2)

这有效:

with(c(simu_data, as.list(svec)),
solution_ODE1(damping,gain,eq,excitation[1:50],time[1:50]))

但是如果我们再添加一个步骤(以便时间重置为 0),则会失败:

with(c(simu_data, as.list(svec)),
solution_ODE1(damping,gain,eq,excitation[1:51],time[1:51]))

Error in lsoda(xstart, time, ODE1, parms) : illegal input detected before taking any integration steps - see written message

关于r - 使用 nlme 和 lsoda 拟合一阶方程,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56254840/

33 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com