- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我对此很陌生,实际上我并不理解绘图方法之间的差异,但是考虑到我有一个小尺寸的图表,loess
似乎给了我最丰富的信息。数据集(n=~300)。我正在尝试使用 facet_wrap
按性别拆分数据,而 loess
对于男性来说效果很好,但对于女性则不然。
这是我用来绘制图表的代码:
ggplot(data = df, aes(x = STM, y = ATTRACTcomp, color=Harasser_Attractiveness)) +
geom_point(position="jitter", size=0.5) +
facet_wrap( ~Participant_Gender,
labeller = as_labeller(c("Female" = "Female Participants", "Male" = "Male Participants"))) +
geom_smooth(method = "loess") +
labs(title = paste(strwrap("Interaction of Harasser Attractiveness, Participant Gender
and SOI on Attraction/Flattery", 50), collapse="\n"),
x = "Participant Short-term Mating Orientation", y = "Participant Attraction/Flattery",
color="Harasser:") +
theme(plot.title = element_text(hjust = 0.5),
plot.caption = element_text(hjust=0, margin=margin(t=15,0,0,0)),
legend.position="top", legend.margin = margin(1,0,0,0), legend.title = element_text(size=10),
legend.text = element_text(size=9), legend.key.size=unit(c(12), "pt")) +
scale_color_grey(start = .6, end = .1)
问题是我得到了男性图的平滑条件平均线,但没有得到女性图的平滑条件平均线。
这是我的错误消息:
Warning messages:
1: In simpleLoess(y, x, w, span, degree = degree, parametric = parametric, :
at 0.97
2: In simpleLoess(y, x, w, span, degree = degree, parametric = parametric, :
radius 0.0009
3: In simpleLoess(y, x, w, span, degree = degree, parametric = parametric, :
all data on boundary of neighborhood. make span bigger
4: In simpleLoess(y, x, w, span, degree = degree, parametric = parametric, :
pseudoinverse used at 0.97
5: In simpleLoess(y, x, w, span, degree = degree, parametric = parametric, :
neighborhood radius 0.03
6: In simpleLoess(y, x, w, span, degree = degree, parametric = parametric, :
reciprocal condition number 1
7: In simpleLoess(y, x, w, span, degree = degree, parametric = parametric, :
zero-width neighborhood. make span bigger
8: In simpleLoess(y, x, w, span, degree = degree, parametric = parametric, :
There are other near singularities as well. 1
9: Computation failed in `stat_smooth()`:
NA/NaN/Inf in foreign function call (arg 5)
有趣的是,对于多个 y 变量,这种情况会发生:女性图总是缺少线条,而且我总是遇到类似的错误。当我忽略facet_wrap并尝试只绘制只有女性参与者的数据帧的子集时,也会发生这种情况。
根据我对类似错误消息的阅读线程的了解,geom_smooth
(或stat_smooth
,因为我认为它在幕后被称为)中的一些计算返回无限值。 (我相当确定这里的相关变量中没有 NA
s/NaN
s。)问题是,有关此错误的所有线程都假设您有权访问这个过程产生了无限的值(value),而我却没有。
有些人一直在说,当您的值正好等于 1 时,就会发生这种情况。我确实有很多 ATTRACTcomp
(我的 y 变量)值正好等于 1,但它们都是男人和女人,所以我不知道为什么我能够得到男性的正确台词,但不能得到女性的正确台词。
同样提供信息的替代绘图方法也会有所帮助。
我不确定重现此错误所需的最小数据量是多少,因此我将包含一个仅包含图表中使用的变量的数据框:
> dput(df)
structure(list(STM = c(6L, 4L, 7L, 3L, 6L, 7L, 3L, 1L, 4L, 6L,
1L, 1L, 6L, 4L, 6L, 3L, 5L, 2L, 5L, 5L, 4L, 1L, 1L, 4L, 4L, 1L,
1L, 2L, 3L, 4L, 3L, 4L, 6L, 6L, 1L, 1L, 1L, 5L, 1L, 1L, 2L, 4L,
2L, 1L, 1L, 1L, 1L, 1L, 2L, 4L, 7L, 2L, 1L, 6L, 4L, 1L, 1L, 1L,
1L, 1L, 4L, 1L, 4L, 5L, 1L, 1L, 7L, 4L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 4L, 1L, 1L, 2L, 1L, 1L, 2L, 4L, 5L, 1L,
1L, 1L, 1L, 4L, 1L, 2L, 1L, 7L, 5L, 4L, 1L, 1L, 1L, 1L, 1L, 4L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L,
7L, 3L, 1L, 1L, 1L, 1L, 7L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 5L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 7L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 5L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 5L, 5L, 4L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 7L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 5L, 2L,
1L, 1L, 6L, 2L, 1L, 1L, 1L, 1L, 5L, 2L, 1L, 1L, 1L, 1L, 4L, 1L,
1L, 1L, 1L, 1L, 2L, 4L, 1L, 1L, 1L, 6L, 1L, 1L, 1L, 3L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L,
4L, 5L, 5L, 1L, 1L, 4L, 4L, 1L, 7L, 1L, 1L, 4L, 3L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 5L, 1L, 1L, 1L, 1L, 5L, 2L, 1L, 4L, 7L, 1L,
1L, 2L, 1L, 1L, 4L, 5L, 5L, 2L, 1L, 4L, 7L, 3L, 5L, 4L, 5L, 4L,
5L, 7L, 7L, 3L), ATTRACTcomp = c(6.53125, 4.25, 5.84375, 4.21875,
5.4375, 2.15625, 3.96875, 4.71875, 3.875, 5.875, 2, 1.87096774193548,
5.65625, 4.5625, 5.65625, 4.53125, 5.375, 1, 5.125, 3.5625, 4.71875,
3.96875, 4.03125, 4.15625, 4.28125, 4.6875, 3.53125, 2.40625,
4.15625, 2.8125, 4.54838709677419, 3.40625, 4.09677419354839,
4.625, 4.53125, 1.90625, 2.32258064516129, 3.53125, 1.90625,
3.46666666666667, 2.2258064516129, 3.625, 4.40625, 4.625, 2.125,
4.3125, 1.9375, 2.4375, 3.96875, 4.875, 5.16129032258065, 2.1875,
1.0625, 3.34375, 3.40625, 1.90625, 1, 3.75, 3.45161290322581,
1.93548387096774, 3.53125, 1.84375, 2.71875, 3.40625, 2.59375,
4.09375, 4.125, 3.96875, 4.34375, 1, 2.6875, 3.6875, 1.09375,
1.0625, 1.375, 1.96875, 2.25, 1.28125, 1.03125, 3.8125, 4.0625,
2.09375, 1.25, 2.34375, 2.90625, 1, 1.5625, 1.25, 1.5625, 1.34375,
2.46875, 1.96875, 1.15625, 1.59375, 1.09375, 2.03125, 1, 5.40625,
3.59375, 1.1875, 1.90625, 1.8125, 1.56666666666667, 1.0625, 3.58064516129032,
4.90625, 6.28125, 1.0625, 2.9375, 1.09375, 1.78125, 1, 2.09375,
1.03125, 4.75, 2.71875, 1, 5.96875, 1.42307692307692, 1, 1.0625,
1.0625, 1.03125, 1.90625, 1.28125, 1.15625, 1.03125, 1.09375,
6.53125, 2.15625, 1.03125, 1.59375, 2, 1.1875, 1.1875, 1.34375,
2.25, 1.03125, 1.0625, 1.3125, 1, 1.5, 1, 2.375, 1.1875, 1.0625,
1.35483870967742, 1, 1.09375, 1.15625, 1, 1, 1.5625, 2, 1, 1.03125,
1.03125, 1, 1.125, 1, 6.6875, 1.1875, 1.51612903225806, 1.0625,
1.125, 1, 1.15625, 1.4375, 1.25, 1.0625, 1.03125, 1.41935483870968,
1, 1, 2.09375, 1.15625, 1, 1, 1, 3.06451612903226, 1, 1, 1, 1,
1, 1, 1, 1.03125, 1.1875, 1.875, 1, 1, 1.5625, 3.25, 1.3125,
1.46875, 2.375, 3.78125, 3.25, 1.21875, 1.25, 1, 1.65625, 1,
1, 6.0625, 1.90625, 6.80645161290323, 1.21875, 1.65625, 1, 1.28125,
1.26666666666667, 1.03125, 1, 2.3125, 4.125, 3.59375, 2.40625,
5.34375, 4.84375, 3.65625, 1.28125, 1.5625, 3.6875, 1.53125,
1.09375, 1.21875, 2.15625, 1.25, 1, 1.375, 1.3125, 1.125, 1.5625,
1.25, 1.5, 1.28125, 2.21875, 3.09375, 3.15625, 1, 1.15625, 4.75,
1, 1.61290322580645, 1.90322580645161, 1.74193548387097, 1.46875,
1, 1.1875, 1.1875, 1.03125, 1.34375, 1.78125, 1, 1.8125, 1, 1,
1.2258064516129, 1.0625, 1.25, 1.59375, 1.09375, 1, 1.03125,
3.9375, 1.46875, 2.71875, 7, 3.875, 3.40625, 2.4375, 2.53125,
2.09677419354839, 1.28125, 1, 1.8125, 1, 1.78125, 1.0625, 1,
1, 1.03125, 1.09375, 1.4375, 1, 1.625, 1.03125, 1.03125, 1.40625,
1.84375, 3.40625, 3.21875, 1, 1, 6.6875, 2.71875, 2.5625, 3.96875,
2.8125, 2.125, 4.21875, 3.65625, 3.25, 1.53125, 5.8125, 3.5625,
4.78125, 1.625, 5.875, 3.21875, 3.41935483870968, 3.21875, 6,
6.34375, 6, 1.40625), Harasser_Attractiveness = structure(c(1L,
1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L,
2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 2L,
2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L,
2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L,
2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 2L,
1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L,
2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L,
2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L,
2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L), .Label = c("Attractive",
"Unattractive"), class = "factor"), Participant_Gender = structure(c(2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L,
2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L,
2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L,
2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L,
1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L,
2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L,
1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L,
2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L,
2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L), .Label = c("Female",
"Male"), class = "factor")), .Names = c("STM", "ATTRACTcomp",
"Harasser_Attractiveness", "Participant_Gender"), row.names = c(NA,
-318L), class = "data.frame")
最佳答案
如noted by joran ,我认为您的数据过于倾斜,无法适应这种平滑功能。对于如此不平衡的数据,我会重新考虑使用此方法,因此集中于 STM == 1
。可以让它显示一些行,例如下面通过删除 STM == 1
的前 50 个女性观察结果,但这并不是离散 x 轴的真正正确显示(即使理论上,变量是连续的,您的实际数据是离散的)。事实上,平滑的线条具有误导性(女性线条是否真的在 STM == 7
处下降,或者真的只是因为那里只有两个点?
我更喜欢如下的箱线图方法,在 aes()
调用中使用 factor(STM)
。在这里,我们可以使用 geom_text
在图表底部添加箱线图的计数,从而更清楚地了解每个箱线图的基础。我们仍然大致了解,较高的 STM
与较高的 ATTRACTComp
相关,随 Harasser_Attractiveness
的变化而变化,但我们不再建议基于平滑关系线基于很少的数据点。
library(tidyverse)
df <- structure(list(STM = c(6L, 4L, 7L, 3L, 6L, 7L, 3L, 1L, 4L, 6L,
1L, 1L, 6L, 4L, 6L, 3L, 5L, 2L, 5L, 5L, 4L, 1L, 1L, 4L, 4L, 1L,
1L, 2L, 3L, 4L, 3L, 4L, 6L, 6L, 1L, 1L, 1L, 5L, 1L, 1L, 2L, 4L,
2L, 1L, 1L, 1L, 1L, 1L, 2L, 4L, 7L, 2L, 1L, 6L, 4L, 1L, 1L, 1L,
1L, 1L, 4L, 1L, 4L, 5L, 1L, 1L, 7L, 4L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 4L, 1L, 1L, 2L, 1L, 1L, 2L, 4L, 5L, 1L,
1L, 1L, 1L, 4L, 1L, 2L, 1L, 7L, 5L, 4L, 1L, 1L, 1L, 1L, 1L, 4L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L,
7L, 3L, 1L, 1L, 1L, 1L, 7L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 5L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 7L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 5L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 5L, 5L, 4L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 7L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 5L, 2L,
1L, 1L, 6L, 2L, 1L, 1L, 1L, 1L, 5L, 2L, 1L, 1L, 1L, 1L, 4L, 1L,
1L, 1L, 1L, 1L, 2L, 4L, 1L, 1L, 1L, 6L, 1L, 1L, 1L, 3L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L,
4L, 5L, 5L, 1L, 1L, 4L, 4L, 1L, 7L, 1L, 1L, 4L, 3L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 5L, 1L, 1L, 1L, 1L, 5L, 2L, 1L, 4L, 7L, 1L,
1L, 2L, 1L, 1L, 4L, 5L, 5L, 2L, 1L, 4L, 7L, 3L, 5L, 4L, 5L, 4L,
5L, 7L, 7L, 3L), ATTRACTcomp = c(6.53125, 4.25, 5.84375, 4.21875,
5.4375, 2.15625, 3.96875, 4.71875, 3.875, 5.875, 2, 1.87096774193548,
5.65625, 4.5625, 5.65625, 4.53125, 5.375, 1, 5.125, 3.5625, 4.71875,
3.96875, 4.03125, 4.15625, 4.28125, 4.6875, 3.53125, 2.40625,
4.15625, 2.8125, 4.54838709677419, 3.40625, 4.09677419354839,
4.625, 4.53125, 1.90625, 2.32258064516129, 3.53125, 1.90625,
3.46666666666667, 2.2258064516129, 3.625, 4.40625, 4.625, 2.125,
4.3125, 1.9375, 2.4375, 3.96875, 4.875, 5.16129032258065, 2.1875,
1.0625, 3.34375, 3.40625, 1.90625, 1, 3.75, 3.45161290322581,
1.93548387096774, 3.53125, 1.84375, 2.71875, 3.40625, 2.59375,
4.09375, 4.125, 3.96875, 4.34375, 1, 2.6875, 3.6875, 1.09375,
1.0625, 1.375, 1.96875, 2.25, 1.28125, 1.03125, 3.8125, 4.0625,
2.09375, 1.25, 2.34375, 2.90625, 1, 1.5625, 1.25, 1.5625, 1.34375,
2.46875, 1.96875, 1.15625, 1.59375, 1.09375, 2.03125, 1, 5.40625,
3.59375, 1.1875, 1.90625, 1.8125, 1.56666666666667, 1.0625, 3.58064516129032,
4.90625, 6.28125, 1.0625, 2.9375, 1.09375, 1.78125, 1, 2.09375,
1.03125, 4.75, 2.71875, 1, 5.96875, 1.42307692307692, 1, 1.0625,
1.0625, 1.03125, 1.90625, 1.28125, 1.15625, 1.03125, 1.09375,
6.53125, 2.15625, 1.03125, 1.59375, 2, 1.1875, 1.1875, 1.34375,
2.25, 1.03125, 1.0625, 1.3125, 1, 1.5, 1, 2.375, 1.1875, 1.0625,
1.35483870967742, 1, 1.09375, 1.15625, 1, 1, 1.5625, 2, 1, 1.03125,
1.03125, 1, 1.125, 1, 6.6875, 1.1875, 1.51612903225806, 1.0625,
1.125, 1, 1.15625, 1.4375, 1.25, 1.0625, 1.03125, 1.41935483870968,
1, 1, 2.09375, 1.15625, 1, 1, 1, 3.06451612903226, 1, 1, 1, 1,
1, 1, 1, 1.03125, 1.1875, 1.875, 1, 1, 1.5625, 3.25, 1.3125,
1.46875, 2.375, 3.78125, 3.25, 1.21875, 1.25, 1, 1.65625, 1,
1, 6.0625, 1.90625, 6.80645161290323, 1.21875, 1.65625, 1, 1.28125,
1.26666666666667, 1.03125, 1, 2.3125, 4.125, 3.59375, 2.40625,
5.34375, 4.84375, 3.65625, 1.28125, 1.5625, 3.6875, 1.53125,
1.09375, 1.21875, 2.15625, 1.25, 1, 1.375, 1.3125, 1.125, 1.5625,
1.25, 1.5, 1.28125, 2.21875, 3.09375, 3.15625, 1, 1.15625, 4.75,
1, 1.61290322580645, 1.90322580645161, 1.74193548387097, 1.46875,
1, 1.1875, 1.1875, 1.03125, 1.34375, 1.78125, 1, 1.8125, 1, 1,
1.2258064516129, 1.0625, 1.25, 1.59375, 1.09375, 1, 1.03125,
3.9375, 1.46875, 2.71875, 7, 3.875, 3.40625, 2.4375, 2.53125,
2.09677419354839, 1.28125, 1, 1.8125, 1, 1.78125, 1.0625, 1,
1, 1.03125, 1.09375, 1.4375, 1, 1.625, 1.03125, 1.03125, 1.40625,
1.84375, 3.40625, 3.21875, 1, 1, 6.6875, 2.71875, 2.5625, 3.96875,
2.8125, 2.125, 4.21875, 3.65625, 3.25, 1.53125, 5.8125, 3.5625,
4.78125, 1.625, 5.875, 3.21875, 3.41935483870968, 3.21875, 6,
6.34375, 6, 1.40625), Harasser_Attractiveness = structure(c(1L,
1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L,
2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 2L,
2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L,
2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L,
2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 2L,
1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L,
2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L,
2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L,
2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L), .Label = c("Attractive",
"Unattractive"), class = "factor"), Participant_Gender = structure(c(2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L,
2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L,
2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L,
2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L,
1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L,
2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L,
1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L,
2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L,
2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L), .Label = c("Female",
"Male"), class = "factor")), .Names = c("STM", "ATTRACTcomp",
"Harasser_Attractiveness", "Participant_Gender"), row.names = c(NA,
-318L), class = "data.frame")
ggplot(
data = df %>%
arrange(Participant_Gender, STM) %>%
slice(50:nrow(.)),
mapping = aes(x = STM, y = ATTRACTcomp, color = Harasser_Attractiveness)
) +
geom_jitter() +
geom_smooth() +
facet_wrap(~ Participant_Gender,
labeller = as_labeller(c("Female" = "Female Participants", "Male" = "Male Participants"))
) +
labs(
title = paste(strwrap("Interaction of Harasser Attractiveness, Participant Gender
and SOI on Attraction/Flattery", 50), collapse = "\n"),
x = "Participant Short-term Mating Orientation",
y = "Participant Attraction/Flattery",
color = "Harasser:"
) +
theme(
plot.title = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0, margin = margin(t = 15, 0, 0, 0)),
legend.position = "top",
legend.margin = margin(1, 0, 0, 0),
legend.title = element_text(size = 10),
legend.text = element_text(size = 9),
legend.key.size = unit(c(12), "pt")
)
#> `geom_smooth()` using method = 'loess' and formula 'y ~ x'
#> Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
#> parametric, : pseudoinverse used at 0.97
#> Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
#> parametric, : neighborhood radius 1.03
#> Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
#> parametric, : reciprocal condition number 0
#> Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
#> parametric, : There are other near singularities as well. 1
#> Warning in predLoess(object$y, object$x, newx = if
#> (is.null(newdata)) object$x else if (is.data.frame(newdata))
#> as.matrix(model.frame(delete.response(terms(object)), : pseudoinverse used
#> at 0.97
#> Warning in predLoess(object$y, object$x, newx = if
#> (is.null(newdata)) object$x else if (is.data.frame(newdata))
#> as.matrix(model.frame(delete.response(terms(object)), : neighborhood radius
#> 1.03
#> Warning in predLoess(object$y, object$x, newx = if
#> (is.null(newdata)) object$x else if (is.data.frame(newdata))
#> as.matrix(model.frame(delete.response(terms(object)), : reciprocal
#> condition number 0
#> Warning in predLoess(object$y, object$x, newx = if
#> (is.null(newdata)) object$x else if (is.data.frame(newdata))
#> as.matrix(model.frame(delete.response(terms(object)), : There are other
#> near singularities as well. 1
#> Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
#> parametric, : pseudoinverse used at 0.97
#> Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
#> parametric, : neighborhood radius 2.03
#> Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
#> parametric, : reciprocal condition number 0
#> Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
#> parametric, : There are other near singularities as well. 4
#> Warning in predLoess(object$y, object$x, newx = if
#> (is.null(newdata)) object$x else if (is.data.frame(newdata))
#> as.matrix(model.frame(delete.response(terms(object)), : pseudoinverse used
#> at 0.97
#> Warning in predLoess(object$y, object$x, newx = if
#> (is.null(newdata)) object$x else if (is.data.frame(newdata))
#> as.matrix(model.frame(delete.response(terms(object)), : neighborhood radius
#> 2.03
#> Warning in predLoess(object$y, object$x, newx = if
#> (is.null(newdata)) object$x else if (is.data.frame(newdata))
#> as.matrix(model.frame(delete.response(terms(object)), : reciprocal
#> condition number 0
#> Warning in predLoess(object$y, object$x, newx = if
#> (is.null(newdata)) object$x else if (is.data.frame(newdata))
#> as.matrix(model.frame(delete.response(terms(object)), : There are other
#> near singularities as well. 4
ggplot(
data = df,
mapping = aes(x = factor(STM), y = ATTRACTcomp, color = Harasser_Attractiveness)
) +
geom_boxplot() +
facet_wrap(
~ Participant_Gender,
labeller = as_labeller(c("Female" = "Female Participants", "Male" = "Male Participants"))
) +
geom_text(
data = df %>%
count(Participant_Gender, STM, Harasser_Attractiveness) %>%
mutate(label = str_c(n), yloc = 0.75),
mapping = aes(y = yloc, label = label),
position = position_dodge(width = 0.75)
) +
labs(
title = paste(strwrap("Interaction of Harasser Attractiveness, Participant Gender
and SOI on Attraction/Flattery", 50), collapse = "\n"),
x = "Participant Short-term Mating Orientation",
y = "Participant Attraction/Flattery",
color = "Harasser:"
) +
theme(
plot.title = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0, margin = margin(t = 15, 0, 0, 0)),
legend.position = "top",
legend.margin = margin(1, 0, 0, 0),
legend.title = element_text(size = 10),
legend.text = element_text(size = 9),
legend.key.size = unit(c(12), "pt")
)
由reprex package于2018年4月16日创建(v0.2.0)。
关于r - 使用 ggplot2 geom_smooth method=loess 绘制数据是否困难?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49866476/
tuple :: (Integer a,Fractional b) => (a,b,String) tuple = (18,5.55,"Charana") 所以这是给我的错误 ‘Integer’ is
关闭。这个问题是off-topic .它目前不接受答案。 想改进这个问题吗? Update the question所以它是on-topic用于堆栈溢出。 关闭 11 年前。 Improve thi
我已经习惯了python和django,但我最近开始学习java。由于工作原因我没有太多时间,所以错过了很多类(class),现在我有点困惑,我必须做作业。 编辑 该程序应该根据每个运动员在自行车和比
这是一个困难的问题,但对专业人士来说很容易。 我在 mysql 中有以下字段:产品名称、mycost、sellprice 和 stock。因为我需要知道每种产品对我的商店的投资有多少,所以我创建了以下
我有 3 个表,其中已包含以下行: TBL_TESTER_LIST id tester_type tester_name 1 LMX LMX-01 2 LMX
我想只使用 GridBagLayout 来布局组件,如图所示。 我已经尝试了几个约束,但它永远不会以预期的结果结束,所以我想知道仅使用 GridBagLayout 是否真的可行。难点在于C1、C2、C
我遇到了以下代码没有结果的问题。但是,如果我取消注释掉指定的行,并注释掉它起作用的 bind_param 行,但这不是破坏了 mysqli 的目的吗?我的 var_dump 给了我的字符串(1)“1”
这个问题在这里已经有了答案: a good python to exe compiler? [closed] (3 个答案) 关闭 9 年前。 有了我之前问题的一些有用答案(见下文),我决定再试一次
我正在使用 Hadoop 分析 GSOD 数据 (ftp://ftp.ncdc.noaa.gov/pub/data/gsod/)。我选择了 5 年来执行我的实验 (2005 - 2009)。我配置了一
我在我的 macOS 应用程序的设置面板中使用 NSGridView。我是这样设置的: class GeneralViewController: RootViewController { pr
我正在尝试使用以下代码在 PHP 中自动安装 WordPress 发行版: $base_dir = '/home/username/wordpress_location'; chdir($base_d
在 Node.js 中将图像转换为 Base64 字符串时,我遇到了一个非常令人困惑的问题 这是我的示例代码: app.get('/image', (req, res) => { ServerAP
我在尝试运行我的应用程序时遇到一些错误,这里是 logcat java.lang.RuntimeException: Unable to instantiate activity Componen
基本上,我正在努力创建一个管理团队和球员的 Java 程序。 根据我的理解,我会有一个团队和一个玩家类。在团队类中会有 get 和 set 方法,以及某种形式的集合来正确存储球员,例如数组列表?然后在
我仍在尝试找出 JavaSwing 中的 BorderLayout,这真的很令人沮丧。 我希望能够将一个 Pane 拆分为 3 个包含的子面板,但我不完全确定如何包含它。 这是我的游戏类,它包含面板
下面的表设计(完整的模式见下文)还有很多需要改进的地方,并且已经造成了许多困难,但是我无法找出如何最好地将它们规范化。这些表格的目的是: ICD9-提供CICD9和CDESC组合的主查找。每个组合在I
这是我的表格: AB元组表 C 表,其中包含 A.id 和 B.id 的条目 D 表,其中包含带有 C.id 的条目和一个 bool 字段“open” 我想计算 D 表中“open”= true 且具
我在 YouTube 上跟踪了一个相当旧的教程,在视频中他以这种方式使用了 mysql_result: return (mysql_result($result,0) == 1) ? true : f
我正在尝试创建一个左侧面板的页面。该面板有一个页眉、一个内容区域和一个页脚。主面板包装器 div 应该是页面高度的 100%。页眉和页脚没有指定的高度,因为我只希望它们足够大以容纳其文本和填充,而我希
我有 TreeView ,我想在其中显示用户通过 file_dialog.getOpenFileNames() 选择的文件; file_dialog 是 QFileDialog。我确实创建了模型类:
我是一名优秀的程序员,十分优秀!