- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
python documentation声明在查找特殊方法时可能会绕过__getattribute__
。这是通过语言语法或内置函数隐式调用的结果。
例如,
elem = container[0]
不等于:
elem = container.__getattribute__('__getitem__')[0]
下面是另一个例子:
class WrappedList:
def __init__(self):
object.__setattr__(self, 'interal_list', ['apple', 'pear', 'orange'])
def __getattribute__(self, attr_name):
interal_list = object.__getattribute__(self, 'interal_list')
attr = getattr(interal_list, attr_name)
return attr
wl = WrappedList()
print("\nSTART TEST 01 ------------------------")
try:
print(wl[0]) # throws TypeError: 'WrappedList' object does not support indexing
except TypeError as e:
print(e)
print("\nSTART TEST 02 ------------------------")
try:
getitem = getattr(wl, '__getitem__')
print(getitem(0)) # works just fine
except TypeError as e:
print(e)
我想编写一个名为MagicOverrider
的类,其中任何继承自MagicOverrider
的类总是调用__getattribute__
,而不是绕过它。我的问题是我们怎样才能做到这一点?
我尝试了以下方法:
class MagicOverrider:
def __call__(self, *args, **kwargs):
f = getattr(self, '__call__')
return f(*args, **kwargs)
def __iter__(self, *args, **kwargs):
f = getattr(self, '__iter__')
return f(*args, **kwargs)
def __getitem__(self, *args, **kwargs):
f = getattr(self, '__getitem__')
return f(*args, **kwargs)
def __setitem__(self, *args, **kwargs):
f = getattr(self, '__setitem__')
return f(*args, **kwargs)
def __add__(self, *args, **kwargs):
f = getattr(self, '__add__')
return f(*args, **kwargs)
def __sub__(self, *args, **kwargs):
f = getattr(self, '__sub__')
return f(*args, **kwargs)
def __mul__(self, *args, **kwargs):
f = getattr(self, '__mul__')
return f(*args, **kwargs)
def __truediv__(self, *args, **kwargs):
f = getattr(self, '__truediv__')
return f(*args, **kwargs)
def __floordiv__(self, *args, **kwargs):
f = getattr(self, '__floordiv__')
return f(*args, **kwargs)
def __mod__(self, *args, **kwargs):
f = getattr(self, '__mod__')
return f(*args, **kwargs)
def __divmod__(self, *args, **kwargs):
f = getattr(self, '__divmod__')
return f(*args, **kwargs)
def __pow__(self, *args, **kwargs):
f = getattr(self, '__pow__')
return f(*args, **kwargs)
def __lshift__(self, *args, **kwargs):
f = getattr(self, '__lshift__')
return f(*args, **kwargs)
def __rshift__(self, *args, **kwargs):
f = getattr(self, '__rshift__')
return f(*args, **kwargs)
def __and__(self, *args, **kwargs):
f = getattr(self, '__and__')
return f(*args, **kwargs)
def __xor__(self, *args, **kwargs):
f = getattr(self, '__xor__')
return f(*args, **kwargs)
def __or__(self, *args, **kwargs):
f = getattr(self, '__or__')
return f(*args, **kwargs)
def __radd__(self, *args, **kwargs):
f = getattr(self, '__radd__')
return f(*args, **kwargs)
def __rsub__(self, *args, **kwargs):
f = getattr(self, '__rsub__')
return f(*args, **kwargs)
def __rmul__(self, *args, **kwargs):
f = getattr(self, '__rmul__')
return f(*args, **kwargs)
def __rtruediv__(self, *args, **kwargs):
f = getattr(self, '__rtruediv__')
return f(*args, **kwargs)
def __rfloordiv__(self, *args, **kwargs):
f = getattr(self, '__rfloordiv__')
return f(*args, **kwargs)
def __rmod__(self, *args, **kwargs):
f = getattr(self, '__rmod__')
return f(*args, **kwargs)
def __rdivmod__(self, *args, **kwargs):
f = getattr(self, '__rdivmod__')
return f(*args, **kwargs)
def __rpow__(self, *args, **kwargs):
f = getattr(self, '__rpow__')
return f(*args, **kwargs)
def __rlshift__(self, *args, **kwargs):
f = getattr(self, '__rlshift__')
return f(*args, **kwargs)
def __rrshift__(self, *args, **kwargs):
f = getattr(self, '__rrshift__')
return f(*args, **kwargs)
def __rand__(self, *args, **kwargs):
f = getattr(self, '__rand__')
return f(*args, **kwargs)
def __rxor__(self, *args, **kwargs):
f = getattr(self, '__rxor__')
return f(*args, **kwargs)
def __neg__(self, *args, **kwargs):
f = getattr(self, '__neg__')
return f(*args, **kwargs)
def __pos__(self, *args, **kwargs):
f = getattr(self, '__pos__')
return f(*args, **kwargs)
def __abs__(self, *args, **kwargs):
f = getattr(self, '__abs__')
return f(*args, **kwargs)
def __invert__(self, *args, **kwargs):
f = getattr(self, '__invert__')
return f(*args, **kwargs)
def __complex__(self, *args, **kwargs):
f = getattr(self, '__complex__')
return f(*args, **kwargs)
def __int__(self, *args, **kwargs):
f = getattr(self, '__int__')
return f(*args, **kwargs)
def __float__(self, *args, **kwargs):
f = getattr(self, '__float__')
return f(*args, **kwargs)
def __round__(self, *args, **kwargs):
f = getattr(self, '__round__')
return f(*args, **kwargs)
def __index__(self, *args, **kwargs):
f = getattr(self, '__index__')
return f(*args, **kwargs)
def __eq__(self, *args, **kwargs):
f = getattr(self, '__eq__')
return f(*args, **kwargs)
def __ne__(self, *args, **kwargs):
f = getattr(self, '__ne__')
return f(*args, **kwargs)
def __lt__(self, *args, **kwargs):
f = getattr(self, '__lt__')
return f(*args, **kwargs)
def __le__(self, *args, **kwargs):
f = getattr(self, '__le__')
return f(*args, **kwargs)
def __gt__(self, *args, **kwargs):
f = getattr(self, '__gt__')
return f(*args, **kwargs)
def __ge__(self, *args, **kwargs):
f = getattr(self, '__ge__')
return f(*args, **kwargs)
def __bool__(self, *args, **kwargs):
f = getattr(self, '__bool__')
return f(*args, **kwargs)
def __new__(self, *args, **kwargs):
f = getattr(self, '__new__')
return f(*args, **kwargs)
def __del__(self, *args, **kwargs):
f = getattr(self, '__del__')
return f(*args, **kwargs)
def __slots__(self, *args, **kwargs):
f = getattr(self, '__slots__')
return f(*args, **kwargs)
def __hash__(self, *args, **kwargs):
f = getattr(self, '__hash__')
return f(*args, **kwargs)
def __instancecheck__(self, *args, **kwargs):
f = getattr(self, '__instancecheck__')
return f(*args, **kwargs)
def __subclasscheck__(self, *args, **kwargs):
f = getattr(self, '__subclasscheck__')
return f(*args, **kwargs)
def __subclasshook__(self, *args, **kwargs):
f = getattr(self, '__subclasshook__')
return f(*args, **kwargs)
def __ror__(self, *args, **kwargs):
f = getattr(self, '__ror__')
return f(*args, **kwargs)
def __iadd__(self, *args, **kwargs):
f = getattr(self, '__iadd__')
return f(*args, **kwargs)
def __isub__(self, *args, **kwargs):
f = getattr(self, '__isub__')
return f(*args, **kwargs)
def __imul__(self, *args, **kwargs):
f = getattr(self, '__imul__')
return f(*args, **kwargs)
def __itruediv__(self, *args, **kwargs):
f = getattr(self, '__itruediv__')
return f(*args, **kwargs)
def __ifloordiv__(self, *args, **kwargs):
f = getattr(self, '__ifloordiv__')
return f(*args, **kwargs)
def __imod__(self, *args, **kwargs):
f = getattr(self, '__imod__')
return f(*args, **kwargs)
def __ipow__(self, *args, **kwargs):
f = getattr(self, '__ipow__')
return f(*args, **kwargs)
def __ilshift__(self, *args, **kwargs):
f = getattr(self, '__ilshift__')
return f(*args, **kwargs)
def __irshift__(self, *args, **kwargs):
f = getattr(self, '__irshift__')
return f(*args, **kwargs)
def __iand__(self, *args, **kwargs):
f = getattr(self, '__iand__')
return f(*args, **kwargs)
def __ixor__(self, *args, **kwargs):
f = getattr(self, '__ixor__')
return f(*args, **kwargs)
def __repr__(self, *args, **kwargs):
f = getattr(self, '__repr__')
return f(*args, **kwargs)
def __str__(self, *args, **kwargs):
f = getattr(self, '__str__')
return f(*args, **kwargs)
def __cmp__(self, *args, **kwargs):
f = getattr(self, '__cmp__')
return f(*args, **kwargs)
def __rcmp__(self, *args, **kwargs):
f = getattr(self, '__rcmp__')
return f(*args, **kwargs)
def __nonzero__(self, *args, **kwargs):
f = getattr(self, '__nonzero__')
return f(*args, **kwargs)
def __unicode__(self, *args, **kwargs):
f = getattr(self, '__unicode__')
return f(*args, **kwargs)
但是,我的解决方案至少有两个问题:
class MagicOverrider:
,抛出TypeError: 'function' object is not iterable
最佳答案
这很棘手。因为当通过语言结构触发魔法方法时,Python 不会经历正常情况下使用的正常属性检索路径(即使用 __getattribute__
等):相反,每当特殊情况时,方法被分配给一个类,它在类本身的二进制数据结构中被标记(这是由Python解释器中的C代码完成的)。这样做是为了使这种用法是快捷方式 - 否则,仅仅为了获得执行的正确方法(例如添加或项目检索)就会需要太多代码。而且,很容易出现一些无限递归循环。
所以 - 魔术方法总是直接通过 Python 检索 - 没有 __getattribute__
。
可以做的就是让 magicmethods 本身在运行时触发 __getattribute__
。如果他们得到任何与自己不同的结果,他们就会调用该结果。只需要小心避免无限递归。
至于潜在的魔术方法:因为无论如何这都需要一个元类,所以只需在创建将强制 __getattribute__
的类时让元类包装所需类的所有魔术方法即可.
下面的代码执行此操作,并包含一个示例类,该示例类在 __getitem__
上放置一个临时包装器:
from functools import wraps
from threading import local as thread_local
from types import MethodType
def wrap(name, method):
local_flag = thread_local()
@wraps(method)
def wrapper(*args, **kw):
local_method = method
if not getattr(local_flag, "running", False) and args and not isinstance(args[0], type):
local_flag.running = True
# trigger __getattribute__:
self = args[0]
cls = self.__class__
retrieved = cls.__getattribute__(self, name)
if not retrieved is wrapper:
local_method = retrieved
if isinstance(local_method, MethodType):
args = args[1:]
result = local_method(*args, **kw)
local_flag.running = False
return result
wrapper._wrapped = True
return wrapper
class MetaOverrider(type):
def __init__(cls, name, bases, namespace, **kwd):
super().__init__(name, bases, namespace, **kwd)
for name in dir(cls):
if not (name.startswith("__") and name.endswith("__")):
continue
if name in ("__getattribute__", "__class__", "__init__"):
continue
magic_method = getattr(cls, name)
if not callable(magic_method) or getattr(magic_method, "_wrapped", False):
continue
setattr(cls, name, wrap(name, magic_method))
class TestOverriding(list, metaclass=MetaOverrider):
def __getattribute__(self, attrname):
attr = super().__getattribute__(attrname)
if attrname == "__getitem__":
original = attr
def printergetitem(self, index):
print("Getting ", index)
return original(index)
attr = printergetitem
return attr
它适用于任何魔术方法 - 但当然,如果您在创建类后将魔术方法分配给类本身,它将隐藏所使用的包装方法。但对于 __getattribute__ 本身添加的任何魔法包装来说,它应该可以工作。
关于python - 我们如何强制为魔术方法(特殊方法)调用 getattribute() ?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48966182/
我想了解 Ruby 方法 methods() 是如何工作的。 我尝试使用“ruby 方法”在 Google 上搜索,但这不是我需要的。 我也看过 ruby-doc.org,但我没有找到这种方法。
Test 方法 对指定的字符串执行一个正则表达式搜索,并返回一个 Boolean 值指示是否找到匹配的模式。 object.Test(string) 参数 object 必选项。总是一个
Replace 方法 替换在正则表达式查找中找到的文本。 object.Replace(string1, string2) 参数 object 必选项。总是一个 RegExp 对象的名称。
Raise 方法 生成运行时错误 object.Raise(number, source, description, helpfile, helpcontext) 参数 object 应为
Execute 方法 对指定的字符串执行正则表达式搜索。 object.Execute(string) 参数 object 必选项。总是一个 RegExp 对象的名称。 string
Clear 方法 清除 Err 对象的所有属性设置。 object.Clear object 应为 Err 对象的名称。 说明 在错误处理后,使用 Clear 显式地清除 Err 对象。此
CopyFile 方法 将一个或多个文件从某位置复制到另一位置。 object.CopyFile source, destination[, overwrite] 参数 object 必选
Copy 方法 将指定的文件或文件夹从某位置复制到另一位置。 object.Copy destination[, overwrite] 参数 object 必选项。应为 File 或 F
Close 方法 关闭打开的 TextStream 文件。 object.Close object 应为 TextStream 对象的名称。 说明 下面例子举例说明如何使用 Close 方
BuildPath 方法 向现有路径后添加名称。 object.BuildPath(path, name) 参数 object 必选项。应为 FileSystemObject 对象的名称
GetFolder 方法 返回与指定的路径中某文件夹相应的 Folder 对象。 object.GetFolder(folderspec) 参数 object 必选项。应为 FileSy
GetFileName 方法 返回指定路径(不是指定驱动器路径部分)的最后一个文件或文件夹。 object.GetFileName(pathspec) 参数 object 必选项。应为
GetFile 方法 返回与指定路径中某文件相应的 File 对象。 object.GetFile(filespec) 参数 object 必选项。应为 FileSystemObject
GetExtensionName 方法 返回字符串,该字符串包含路径最后一个组成部分的扩展名。 object.GetExtensionName(path) 参数 object 必选项。应
GetDriveName 方法 返回包含指定路径中驱动器名的字符串。 object.GetDriveName(path) 参数 object 必选项。应为 FileSystemObjec
GetDrive 方法 返回与指定的路径中驱动器相对应的 Drive 对象。 object.GetDrive drivespec 参数 object 必选项。应为 FileSystemO
GetBaseName 方法 返回字符串,其中包含文件的基本名 (不带扩展名), 或者提供的路径说明中的文件夹。 object.GetBaseName(path) 参数 object 必
GetAbsolutePathName 方法 从提供的指定路径中返回完整且含义明确的路径。 object.GetAbsolutePathName(pathspec) 参数 object
FolderExists 方法 如果指定的文件夹存在,则返回 True;否则返回 False。 object.FolderExists(folderspec) 参数 object 必选项
FileExists 方法 如果指定的文件存在返回 True;否则返回 False。 object.FileExists(filespec) 参数 object 必选项。应为 FileS
我是一名优秀的程序员,十分优秀!