- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我需要将此查询转换为 flex 搜索,但是我面临的问题是,在 flex 搜索中(具有)尚不支持。Select sum(count) as count,prop1
from
(
SELECT Count(*) as count,prop1 FROM [table1] group by prop1,prop2
having count = 1
)
group by prop1
order by count desc limit 10
我在 flex 搜索中尝试以下查询:
`GET /analytics_data/_search
{
"size": 0,
"query": {
"bool": {
"filter": [
{
"term":
{
"field": "test"
}
}
]
}
},
"aggs": {
"aggregation": {
"terms": {
"field": "prop1"
},
"aggs": {
"subaggregation": {
"terms": {
"field": "prop2",
"order": {
"_count": "desc"
}
}
},
"test":{
"bucket_selector": {
"buckets_path":
{
"test1": "_count"
},
"script":"params.test1 == 1"
}
}
}
}
}
}`
PUT /index
{
"mappings" : {
"timeline" : {
"properties" : {
"prop1" : {
"type" : "keyword"
},
"prop2" : {
"type" : "keyword"
}
}
}
}
}
{
"took": 344,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 852146,
"max_score": 0,
"hits": []
},
"aggregations": {
"prop1": {
"doc_count_error_upper_bound": 646,
"sum_other_doc_count": 37299,
"buckets": [
{
"key": "porp1-key",
"doc_count": 348178,
"prop2": {
"doc_count_error_upper_bound": 130,
"sum_other_doc_count": 345325,
"buckets": [
{
"key": "e1552d2d-da84-4588-9b65-16c33848bb94_1",
"doc_count": 558,
"prop2_count": {
"value": 0
},
"prop2_check": {
"value": 0
}
},
{
"key": "04b1a8eb-f876-459b-af9b-855493318dca_426",
"doc_count": 383,
"prop2_count": {
"value": 0
},
"prop2_check": {
"value": 0
}
},
{
"key": "b165d2c7-6a23-4a4d-adbb-3b2a79d4c627_80",
"doc_count": 344,
"prop2_count": {
"value": 0
},
"prop2_check": {
"value": 0
}
},
{
"key": "c4ea55dc-c3b3-492b-98a2-1ad004212c3d_99",
"doc_count": 297,
"prop2_count": {
"value": 0
},
"prop2_check": {
"value": 0
}
},
{
"key": "dfc1ae22-5c7f-49ab-8488-207661b43716_294",
"doc_count": 264,
"prop2_count": {
"value": 0
},
"prop2_check": {
"value": 0
}
},
{
"key": "28815490-e7ce-420b-bab8-57a6ffc3f56a_572",
"doc_count": 239,
"prop2_count": {
"value": 0
},
"prop2_check": {
"value": 0
}
},
{
"key": "c3c56ec8-e0ff-46ea-841d-cc22b2dc65f6_574",
"doc_count": 217,
"prop2_count": {
"value": 0
},
"prop2_check": {
"value": 0
}
},
{
"key": "473289b8-fb73-4cbb-b8d7-a5386846745f_34",
"doc_count": 187,
"prop2_count": {
"value": 0
},
"prop2_check": {
"value": 0
}
},
{
"key": "670cb862-7976-4fd5-ba3f-3f8b7c03d615_11",
"doc_count": 185,
"prop2_count": {
"value": 0
},
"prop2_check": {
"value": 0
}
},
{
"key": "41870755-96dd-4a00-ab76-632a1dfaecb5_341",
"doc_count": 179,
"prop2_count": {
"value": 0
},
"prop2_check": {
"value": 0
}
}
]
},
"final": {
"value": 0
}
} ]
}
}
}
最佳答案
试试这个。聚合final
将为您提供所需的输出。
GET /analytics_data/_search
{
"size": 0,
"query": {
"bool": {
"filter": [
{
"term": {
"field": "test"
}
}
]
}
},
"aggs": {
"prop1": {
"terms": {
"field": "prop1",
"size": 10
},
"aggs": {
"prop2": {
"terms": {
"field": "prop2",
"size": 10
},
"aggs": {
"prop2_count": {
"value_count": {
"field": "prop2"
}
},
"prop2_check": {
"bucket_script": {
"buckets_path": {
"count": "prop2_count.value"
},
"script": "(params.count == 1) ? 1 : 0"
}
}
}
},
"final": {
"sum_bucket": {
"buckets_path": "prop2>prop2_check"
}
}
}
}
}
}
PUT prop
{
"mappings": {
"prop": {
"properties": {
"prop1": {
"type": "keyword"
},
"prop2": {
"type": "keyword"
}
}
}
}
}
POST _bulk
{"index":{"_index":"prop","_type":"prop"}}
{"prop1":"p1","prop2":"q1"}
{"index":{"_index":"prop","_type":"prop"}}
{"prop1":"p1","prop2":"q2"}
{"index":{"_index":"prop","_type":"prop"}}
{"prop1":"p1","prop2":"q2"}
{"index":{"_index":"prop","_type":"prop"}}
{"prop1":"p2","prop2":"q5"}
{"index":{"_index":"prop","_type":"prop"}}
{"prop1":"p2","prop2":"q6"}
GET prop/prop/_search
{
"size": 0,
"aggs": {
"prop1": {
"terms": {
"field": "prop1",
"size": 10
},
"aggs": {
"prop2": {
"terms": {
"field": "prop2",
"size": 10
},
"aggs": {
"prop2_count": {
"value_count": {
"field": "prop2"
}
},
"prop2_check": {
"bucket_script": {
"buckets_path": {
"count": "prop2_count.value"
},
"script": "(params.count == 1) ? 1 : 0"
}
}
}
},
"final":{
"sum_bucket": {
"buckets_path": "prop2>prop2_check"
}
}
}
}
}
}
{
"took": 6,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 5,
"max_score": 0,
"hits": []
},
"aggregations": {
"prop1": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "p1",
"doc_count": 3,
"prop2": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "q2",
"doc_count": 2,
"prop2_count": {
"value": 2
},
"prop2_check": {
"value": 0
}
},
{
"key": "q1",
"doc_count": 1,
"prop2_count": {
"value": 1
},
"prop2_check": {
"value": 1
}
}
]
},
"final": {
"value": 1
}
},
{
"key": "p2",
"doc_count": 2,
"prop2": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "q5",
"doc_count": 1,
"prop2_count": {
"value": 1
},
"prop2_check": {
"value": 1
}
},
{
"key": "q6",
"doc_count": 1,
"prop2_count": {
"value": 1
},
"prop2_check": {
"value": 1
}
}
]
},
"final": {
"value": 2
}
}
]
}
}
}
关于elasticsearch - 将SQL查询转换为ElasticSearch,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46956707/
我在这里有一个问题,我不知道这是否正常。 但是我认为这里有些湖,安装插件elasticsearch-head之后,我在浏览器中启动url“http://localhost:9200/_plugin/h
我写了这个 flex 搜索查询: es.search(index=['ind1'],doc_type=['doc']) 我得到以下结果: {'_shards': {'failed': 0, 'skip
在ElasticSearch.Net v.5中,存在一个属性 Elasticsearch.Net.RequestData.Path ,该属性在ElasticSearch.Net v.6中已成为depr
如何让 elasticsearch 应用新配置?我更改了文件 ~ES_HOME/config/elasticsearch.yml 中的一个字符串: # Disable HTTP completely:
我正在尝试使用以下分析器在 elastic serach 7.1 中实现部分子字符串搜索 PUT my_index-001 { "settings": { "analysis": {
假设一个 elasticsearch 服务器在很短的时间内接收到 100 个任务。有些任务很短,有些任务很耗时,有些任务是删除任务,有些是插入和搜索查询。 elasticsearch 是如何决定先运行
我需要根据日期过滤一组值(在此处添加字段),然后按 device_id 对其进行分组。所以我正在使用以下东西: { "aggs":{ "dates_between":{ "fi
我在 Elasticsearch 中有一个企业索引。索引中的每个文档代表一个业务,每个业务都有business_hours。我试图允许使用星期几和时间过滤营业时间。例如,我们希望能够进行过滤,以显示我
我有一个这样的过滤查询 query: { filtered: { query: { bool: { should: [{multi_match: {
Elasticsearch 相当新,所以可能不得不忍受我,我遇到了一个问题,如果我使用 20 个字符或更少的字符搜索文档,文档会出现,但是查询中同一个单词中的任何更多字符,我没有结果: 使用“苯氧甲基
我试图更好地理解 ElasticSearch 的内部结构,所以我想知道 ElasticSearch 在内部计算以下两种情况的术语统计信息的方式是否存在任何差异。 第一种情况是当我有这样的文件时: {
在我的 elasticsearch 索引中,我索引了一堆工作。为简单起见,我们只说它们是一堆职位。当人们在我的搜索引擎中输入职位时,我想“自动完成”可能的匹配。 我在这里调查了完成建议:http://
我在很多映射中使用多字段。在 Elastic Search 的文档中,指示应将多字段替换为“fields”参数。参见 http://www.elasticsearch.org/guide/en/ela
我有如下查询, query = { "query": {"query_string": {"query": "%s" % q}}, "filter":{"ids
我有一个Json数据 "hits": [ { "_index": "outboxprov1", "_type": "deleted-c
这可能是一个初学者的问题,但我对大小有一些疑问。 根据 Elasticsearch 规范,大小的最大值可以是 10000,我想在下面验证我的理解: 示例查询: GET testindex-2016.0
我在 Elastic Search 中发现了滚动功能,这看起来非常有趣。看了那么多文档,下面的问题我还是不清楚。 如果偏移量已经存在那么为什么要使用滚动? 即将到来的记录呢?假设它完成了所有数据的滚动
我有以下基于注释的 Elasticsearch 配置,我已将索引设置为不被分析,因为我不希望这些字段被标记化: @Document(indexName = "abc", type = "efg
我正在尝试在单个索引中创建多个类型。例如,我试图在host索引中创建两种类型(post,ytb),以便在它们之间创建父子关系。 PUT /ytb { "mappings": { "po
我尝试创建一个简单的模板,包括一些动态模板,但我似乎无法为文档编制索引。 我得到错误: 400 {"error":"MapperParsingException[mapping [_default_]
我是一名优秀的程序员,十分优秀!