gpt4 book ai didi

theorem-proving - 不同的 "sorted"谓词在 Dafny 中应该是等效的

转载 作者:行者123 更新时间:2023-12-02 23:06:35 28 4
gpt4 key购买 nike

根据Automating Induction with an SMT Solver以下应该适用于 Dafny:

ghost method AdjacentImpliesTransitive(s: seq<int>)
requires ∀ i • 1 ≤ i < |s| ==> s[i-1] ≤ s[i];
ensures ∀ i,j {:induction j} • 0 ≤ i < j < |s| ==> s[i] ≤ s[j];
{ }

但是 Dafny 拒绝了它(至少在我的桌面和 Dafny 在线中)。也许有些事情发生了变化。

问题:

问题1。为什么?

Q2.是否真的需要对 j 或 i 和 j 进行归纳?我认为对 seq 长度的归纳应该足够了。

无论如何,我对以下内容更感兴趣:我想通过手动归纳来证明这一点,以供学习。在纸面上,我认为对 seq 长度的归纳就足够了。现在我正在尝试在 Dafny 上执行此操作:

lemma {:induction false} AdjacentImpliesTransitive(s: seq<int>)
ensures forall i :: 0 <= i <= |s|-2 ==> s[i] <= s[i+1] ==> forall l, r :: 0 <= l < r <= |s|-1 ==> s[l] <= s[r]
decreases s
{
if |s| == 0
{
//explicit calc proof, not neccesary
calc {
(forall i :: 0 <= i <= 0-2 ==> s[i] <= s[i+1]) ==> (forall l, r :: 0 <= l < r <= 0-1 ==> s[l] <= s[r]);
==
(forall i :: false ==> s[i] <= s[i+1]) ==> (forall l, r :: false ==> s[l] <= s[r]);
==
true ==> true;
==
true;
}
}
else if |s| == 1
{
//trivial for dafny
}
else {

AdjacentImpliesTransitive(s[..|s|-1]);
assert (forall i :: 0 <= i <= |s|-3 ==> s[i] <= s[i+1]) ==> (forall l, r :: 0 <= l < r <= |s|-2 ==> s[l] <= s[r]);
//What??

}
}

我陷入了最后一个案例。我不知道如何将计算证明风格(如基本情况中的证明风格)与归纳炒作结合起来。

也许这就是棘手的含义。在纸面上(“非正式”证明),当我们需要通过归纳法证明蕴涵 p(n) ==> q(n) 时,我们有这样的东西:

Hyp:p(k-1) ==> q(k-1)

Tesis:p(k) ==> q(k)

但这证明了:

(p(k-1) ==> q(k-1) && p(k)) ==> q(k)

Q3.我的方法有意义吗?我们如何在 dafny 中进行这种归纳?

最佳答案

我不知道Q1Q2的答案。但是,如果您添加 assert s[|s|-2] <= s[|s|-1],您的归纳证明就会通过。在归纳案例中(您不需要其他断言)。这是完整的证明:

lemma {:induction false} AdjacentImpliesTransitive(s: seq<int>)
requires forall i :: 0 <= i <= |s|-2 ==> s[i] <= s[i+1]
ensures forall l, r :: 0 <= l < r <= |s|-1 ==> s[l] <= s[r]
decreases s
{
if |s| == 0
{
//explicit calc proof, not neccesary
calc {
(forall i :: 0 <= i <= 0-2 ==> s[i] <= s[i+1]) ==> (forall l, r :: 0 <= l < r <= 0-1 ==> s[l] <= s[r]);
==
(forall i :: false ==> s[i] <= s[i+1]) ==> (forall l, r :: false ==> s[l] <= s[r]);
==
true ==> true;
==
true;
}
}
else if |s| == 1
{
//trivial for dafny
}
else {

AdjacentImpliesTransitive(s[..|s|-1]);
assert s[|s|-2] <= s[|s|-1];

}
}

出于某种原因,我不得不将您的 ensures 分开条款进入 requiresensures条款。否则,达夫尼提示undeclared identifier: _t#0#0 。我不知道这意味着什么。

而且,如果有趣的话,这里有一个更短的证明:

lemma AdjacentImpliesTransitive(s: seq<int>)
requires forall i | 1 <= i < |s| :: s[i-1] <= s[i]
ensures forall i,j | 0 <= i < j < |s| :: s[i] <= s[j]
decreases s
{
if |s| < 2
{
assert forall i,j | 0 <= i < j < |s| :: s[i] <= s[j];
} else {
AdjacentImpliesTransitive(s[..|s|-1]);
assert s[|s|-2] <= s[|s|-1];
}
}

关于theorem-proving - 不同的 "sorted"谓词在 Dafny 中应该是等效的,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48331442/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com