- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我不确定它是否与 BERT 相关,没有机会测试其他模型,但为 BERT 测试了。
我最近注意到,我以前在 google colab 中免费使用的训练算法和数据在我们付费的 Azure ML 工作区中运行速度似乎明显慢了。
我进行了比较 - 相同的数据文件(分类问题、10K 条评论的情感分析)、完全相同的笔记本代码(复制+粘贴)、安装在两者上的相同最新版本的 ktrain lib,两者都必须使用 Python 3.8,但是GPU 在 Colab 方面的性能更高一些。
至少可以说,结果让我感到惊讶:Google 实验室的工作速度快了 10 倍:17 分钟 vs 170 分钟,而且可重现。 Tesla T4 (colab) 确实比 K80 (azure) 快,但根据已知的基准测试,速度并不快。所以我想知道还有什么重要的。是德吗。在 Azure ML 中创建的环境执行速度这么慢?如果您知道它可能是什么,或者我还可以检查双方以揭示它,请分享
顺便说一句,Google 在 Colab 中免费为您提供 T4 供您进行实验,而您必须为 Azure 上速度较慢的 K80 付费。
Google 协作实验室执行时间 = 17 分钟 Google Colab 硬件:CPU 型号:Intel(R) Xeon(R) CPU @ 2.20GHz,内存 13Gb,GPU:
azure 执行时间 = 2 小时 50 分钟 = 170 分钟(10 倍的 Colab) Azure 硬件信息
K80与T4对比:https://technical.city/en/video/Tesla-K80-vs-Tesla-T4
最佳答案
因此,我认为首先,要在硬件方面进行非同类比较,您将很难找到问题的根源。
话虽如此,在 Azure 上,Standard_NC6 计算目标仅提供 K80 卡的一半。我不确定这个“一半”如何划分所有规范,但我确实知道它只提供一半的 GPU 内存。由此,我假设它也只提供一半的 CUDA 核心,但可能不是内存总线带宽的一半。
最后,T4 的升压时钟速度几乎是 K80 的两倍,这可能不会带来您所看到的 10 倍差异,但肯定会对性能产生重大影响。
我建议也许在 Colab 笔记本上配置 K80,或者在这两个笔记本上都可用的任何其他支持 GPU 的计算,以测试您对这两个平台上的性能的任何理论。
关于azure - Ms Azure 与 Google Colab BERT 训练性能的令人惊讶的结果,不知道如何解释,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/73283498/
real adaboost Logit boost discrete adaboost 和 gentle adaboost in train cascade parameter 有什么区别.. -bt
我想为 book crossing 构建训练数据矩阵和测试数据矩阵数据集。但作为 ISBN 代码的图书 ID 可能包含字符。因此,我无法应用此代码(来自 tutorial ): #Create two
我找到了 JavaANPR 库,我想对其进行自定义以读取我所在国家/地区的车牌。 似乎包含的字母表与我们使用的字母表不同 ( http://en.wikipedia.org/wiki/FE-Schri
我有一个信用卡数据集,其中 98% 的交易是非欺诈交易,2% 是欺诈交易。 我一直在尝试在训练和测试拆分之前对多数类别进行欠采样,并在测试集上获得非常好的召回率和精度。 当我仅在训练集上进行欠采样并在
我打算: 在数据集上从头开始训练 NASNet 只重新训练 NASNet 的最后一层(迁移学习) 并比较它们的相对性能。从文档中我看到: keras.applications.nasnet.NASNe
我正在训练用于分割的 uNet 模型。训练模型后,输出全为零,我不明白为什么。 我看到建议我应该使用特定的损失函数,所以我使用了 dice 损失函数。这是因为黑色区域 (0) 比白色区域 (1) 大得
我想为新角色训练我现有的 tesseract 模型。我已经尝试过 上的教程 https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesser
我的机器中有两个 NVidia GPU,但我没有使用它们。 我的机器上运行了三个神经网络训练。当我尝试运行第四个时,脚本出现以下错误: my_user@my_machine:~/my_project/
我想在python的tensorflow中使用稀疏张量进行训练。我找到了很多代码如何做到这一点,但没有一个有效。 这里有一个示例代码来说明我的意思,它会抛出一个错误: import numpy as
我正在训练一个 keras 模型,它的最后一层是单个 sigmoid单元: output = Dense(units=1, activation='sigmoid') 我正在用一些训练数据训练这个模型
所以我需要使用我自己的数据集重新训练 Tiny YOLO。我正在使用的模型可以在这里找到:keras-yolo3 . 我开始训练并遇到多个优化器错误,添加了错误代码以防止混淆。 我注意到即使它应该使用
将 BERT 模型中的标记化范式更改为其他东西是否有意义?也许只是一个简单的单词标记化或字符级标记化? 最佳答案 这是论文“CharacterBERT: Reconciling ELMo and BE
假设我有一个非常简单的神经网络,比如多层感知器。对于每一层,激活函数都是 sigmoid 并且网络是全连接的。 在 TensorFlow 中,这可能是这样定义的: sess = tf.Inte
有没有办法在 PyBrain 中保存和恢复经过训练的神经网络,这样我每次运行脚本时都不必重新训练它? 最佳答案 PyBrain 的神经网络可以使用 python 内置的 pickle/cPickle
我尝试使用 Keras 训练一个对手写数字进行分类的 CNN 模型,但训练的准确度很低(低于 10%)并且误差很大。我尝试了一个简单的神经网络,但没有效果。 这是我的代码。 import tensor
我在 Windows 7 64 位上使用 tesseract 3.0.1。我用一种新语言训练图书馆。 我的示例数据间隔非常好。当我为每个角色的盒子定义坐标时,盒子紧贴角色有多重要?我使用其中一个插件,
如何对由 dropout 产生的许多变薄层进行平均?在测试阶段要使用哪些权重?我真的很困惑这个。因为每个变薄的层都会学习一组不同的权重。那么反向传播是为每个细化网络单独完成的吗?这些细化网络之间的权重
我尝试训练超正方语言。我正在使用 Tess4J 进行 OCR 处理。我使用jTessBoxEditor和SerakTesseractTrainer进行训练操作。准备好训练数据后,我将其放在 Tesse
我正在构建一个 Keras 模型,将数据分类为 3000 个不同的类别,我的训练数据由大量样本组成,因此在用一种热编码对训练输出进行编码后,数据非常大(item_count * 3000 * 的大小)
关闭。这个问题需要多问focused 。目前不接受答案。 想要改进此问题吗?更新问题,使其仅关注一个问题 editing this post . 已关闭 8 年前。 Improve this ques
我是一名优秀的程序员,十分优秀!